Torsional pendulum

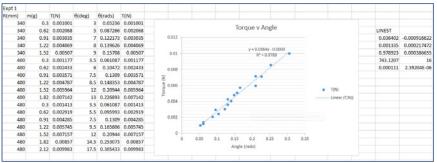
We first saw this apparatus at the 2023 IOP Stirling physics teachers meeting. We were impressed by the thought that had gone into the design and the very reasonable cost. We received the apparatus for evaluation.

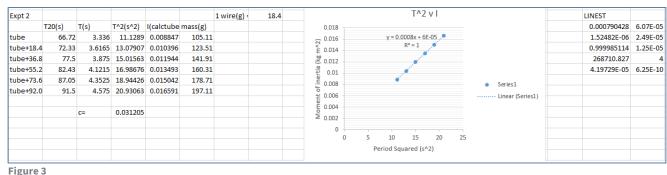
It arrived complete, well packaged and included a comprehensive manual detailing kit contents, assembly instructions and details of four suggested experiments (including some background theory).

The assembly instructions run to five pages. Assembly is not difficult but there is an order to assembly and some subtle features in the construction that are easily overlooked. Construction took about 90 minutes.

Experiment 1

Experiment 1 examines torque v angular displacement. This, in theory, was the simplest of the experiments. Provide a force (using thread, paperclips and a pulley wheel) at right angles to the suspended rod at a measured distance from the axis and measure the angle of rotation. This enables the torsional constant to be measured. This proved to be the least accurate of the experiments due to the poor quality of the cobbled together pulley wheel as no pulley wheel is provided (see Figure 1).




Figure 1 - Torque v angle rotation (Experiment 1).

Experiment 2

Experiment 2 examines the period of rotation v mass of the oscillating rod. The aim of this experiment is to show that the square of the period of oscillation is directly proportional to the moment of inertia of the tube/ rod. The mass of the oscillating tube, and hence the moment of inertia, is altered by slotting lengths of copper wire into the tube (see Figure 2). Note the difference between the torsional constant calculated from the gradient of the graph in Figure 1 (0.036402N m rad⁻¹) with that obtained by calculation using the gradient in Figure 3 (0.031205N m rad⁻¹). As can be seen from Figure 3 the graph confirms the relationship.

Figure 2

>>

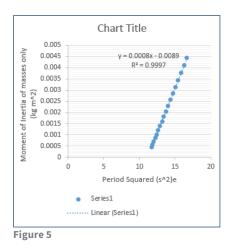
Activities & Professional Learning

Expt 3																					
	m(g)	L(mm)	id(mm)	od(mm)	I (tube)	I(rod)															
tube	105.11	1005	7	9.5	0.008849	0.008847	'														
	m(g)	R(mm)	I(masses)	I(tot)			T20(s)	T(s)	T*T(s*s)	I(tot)	I(masses)	Isys from T^2									
	8.89	· ·		0.009302			68.45			0.009302168						Ch	nart Tit	le			
	8.89			0.009423			68.83			0.009423072			0.014								
	8.89	200	0.000711	0.009558			69.32	3.466	12.01316	0.0095582	0.000711	0.009495598	0.01			y = 0	.0008x - 7l	E-05 🗬			
	8.89	220	0.000861	0.009708			69.85	3.4925	12.19756	0.009707552	0.000861	0.009641354	€ 0.012			F	t ^z = 0.9997	1			
	8.89	240	0.001024	0.009871			70.55	3.5275	12.44326	0.009871128	0.001024	0.009835563	< E					-			
	8.89	260	0.001202	0.010049			71.02	3.551	12.6096	0.010048928	0.001202	0.009967048	볼 0.01				/				
	8.89	280	0.001394	0.010241			71.71	3.5855	12.85581	0.010240952	0.001394	0.010161659	ertia				-				
	8.89	300	0.0016	0.010447			72.56	3.628	13.16238	0.0104472	0.0016	0.010403986	- Jo								
	8.89			0.010668			73.06	3.653	13.34441	0.010667672	0.001821	0.010547864	2 0.006							 Ser 	ries1
	8.89			0.010902			74.05			0.010902368			ame							····· Lin	near (Series1)
	8.89			0.011151			74.83			0.011151288			≥ 0.004								
	8.89			0.011414			75.74			0.011414432			otal								
	8.89			0.011692			76.65						Ĕ 0.002								
	8.89			0.011983			77.54			0.011983392			0								
	8.89			0.012289			78.56			0.012289208			_	0	5	10		15	20		
	8.89			0.012609			79.52			0.012609248					F	eriod Square	ed (s^2)				
	8.89			0.012944			80.77	4.0385		0.012943512											
	8.89	500	0.004445	0.013292			81.56	4.078	16.63008	0.013292	0.004445	0.013144971									

Figure 4

Experiment 3

Experiment 3 examines the relationship between period and mass distribution. Two collared masses are provided which slide over the suspended rod and are fixed at various distances from the axis of rotation using small grub screws. It is suggested that the moment of inertia of the system is plotted against the square of the period of oscillation. The value from the previous experiment is used for the moment of inertia of the tube to which we add the contribution of the two masses using mr².

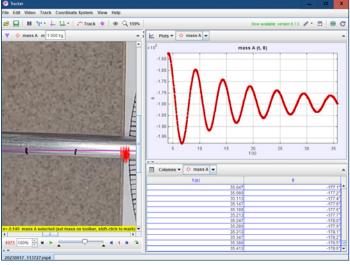

We also calculated the moment of inertia of the tube and compared this with the assumption that the formula for a thin rod was valid. We calculated $I_{tube} = 0.008849$ kg m², $I_{rod} = 0.008847$ kg m². Using the gradient this experiment gave a value for the torsional constant of (0.031643N m rad⁻¹).

Our results for this experiment are shown in Figure 4.

Experiment 3a

Not included as a suggested experiment in the instructions but we used the results from experiment 3 and plotted only the moment of inertia of the two masses against the period squared. The gradient (and hence torsional constant) was obviously the same but the offset gave a value for the moment of inertia of the rod which was 0.008921kg m²; very similar to that obtained in experiment 2 (see Figure 5).

Ехр Зс									
	R(mm)	Isys-Itube	LOG(R)	LOG(Im)					
		0.000412	-0.79588	-3.38535		Lo	g(radius) v Loį	g(Imasses)	
	180	0.000515	-0.744727	-3.28832				0	
	200	0.000649	-0.69897	-3.18801	-1	-0.8 -0.6	-0.4	-0.2 0.5	
	220	0.000794	-0.657577	-3.09997					
	240	0.000989	-0.619789	-3.00499				-1	
	260	0.00112	-0.585027	-2.95075	-			-1.5	
	280	0.001315	-0.552842	-2.88118	[m]			-2	Series1
	300	0.001557	-0.522879	-2.80771	50	y =	2.0734x - 1.735		
	320	0.001701	-0.49485	-2.76932		y=:	R ^z = 0.9996	-2.5	······ Linear (Series)
	340	0.001989	-0.468521	-2.70143			**	-3	
	360	0.002218	-0.443697	-2.65401		*****		-3.5	
	380	0.002489	-0.420216	-2.60399				-4	
	400	0.002763	-0.39794	-2.55863			LOG(R)	-4	
	420	0.003034	-0.376751	-2.51797					
	440	0.003349	-0.356547	-2.47512					
	460	0.003649	-0.337242	-2.43787		LINEST			
	480	0.004045	-0.318759	-2.39313		2.0734408	-1.735009		
	500	0.004298	-0.30103	-2.36673		0.010193191	0.005365		
						0.999613465	0.006381		
	gradient=	power of R=	2.0734408			41377.37789	16		
otal ma	ss (g) =	18.40733				1.684983375	0.000652		
alculate	d mass (g) =	9.203663							



Experiment 3b

Again, not suggested in the supplied notes but an interesting alternative analysis of the collected data. We were, after all, starting to get carried away with ourselves. Again using the results from experiment 2 and 3 we plotted the logarithm of the moment of inertia of the masses (system moment of inertia calculated from the period of oscillation minus the rod moment of inertia) against the logarithm of the distance from the axis of rotation.

The gradient of this graph should be the power to which the moment of inertia depends on the radius and the offset should be the logarithm of the two masses combined (see Figure 6).

Activities & Professional Learning

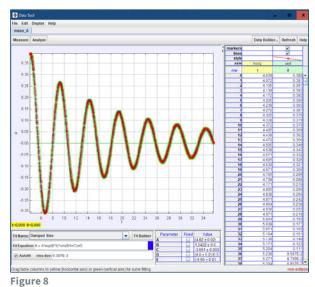
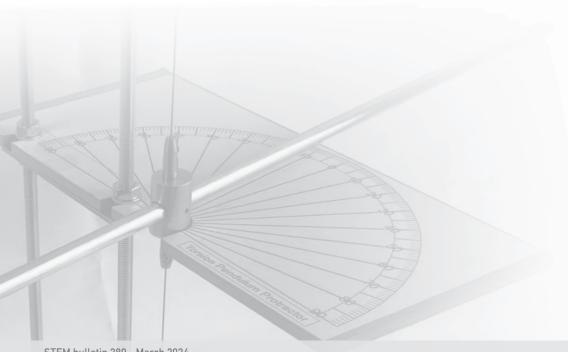


Figure 7

This yielded a value of 2.07 for the power of the radius and a value for each mass of 9.20g.

The measured value for each mass used in experiment 3 was 8.89g.

Experiment 4


In the instruction manual it is suggested that 'sails' can be added to each end of the oscillating rod and that the underdamped oscillation can be studied using tracker. We did this (Figure 7) and the results

using the Tracker data analysis curve fitting tool are shown in Figure 8.

We published a a simple activity which shows under, critical and over damping in Bulletin 279. <<

References and resources

- A python article on data analysis and curve fitting can be found here https://www.sserc.org.uk/wp-content/uploads/2023/03/ SSERC-bulletin-278-p2_5-Python-Pandas-Physics-Pendulums.pdf.
- The torsion pendulum used in this article can be found here: https://www.simplesciencesupplies.co.uk/shop/p/torsionpendulum-ah-project.
- The current price of a torsion pendulum as at 18/08/2023 is £69.99.
- Critical damping demonstration can be found here: https://www.sserc.org.uk/wp-content/uploads/2023/10/SSERC-bulletin-279p5_6-Critical-damping-demonstration.pdf

