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Introduction

We will help you to:
•  distinguish between quantitative and qualitative 

variables (Types of variables section)
•  understand the effect of natural random variation  

on collected data and how to deal with it 
(Variation and true values section)

•  think about different types of experimental  
design (Types of experiment section)

•  choose the correct statistical test for the data 
collected for your particular experimental design 
(Choosing your statistical test section)

•  understand how a statistical test helps to  
deal with chance and uncertainty in your  
data by using a null hypothesis to determine  
statistical significance (Dealing with chance  
and uncertainty section)

•  set up the statistical package R (How to  
actually carry out statistical tests section).

We have tried to write this booklet in a way that 
is accessible to both teachers and senior school 
students, particularly those students who will 
undertake a Project investigation in Advanced Higher 
Biology. If you think incorporating statistics into 
the report of a biology investigation is difficult, we 
want to change your mind. Coming up with a project 
that is both interesting and achievable can require 
a lot of thinking and ingenuity; collecting the data 
can require a lot of patience and really test your 
practical skills. By comparison, simple but effective 
statistical treatment of the data should be much less 
challenging. Also, if you skimp on statistics, you are 
missing a trick in really getting maximum information 
out of your hard-won data. 

Many classroom experiments in biology also lend 
themselves to a statistical treatment of their results, 
improving the conclusions we can draw from our 
data. Such analyses, although perhaps not familiar, 
are no more demanding than the well established 
processes of tabulating and graphing results that 
we carry out at present. Students in the Senior 
Phase will be familiar with the concepts of variation 
and chance in biological systems as they apply to 
the scientific ideas of selection, adaptation and 
evolution. Statistics applies the concepts of variation 
and chance to the analysis of experimental results, 
developing understanding of the important scientific 
ideas of a null hypothesis and statistical significance.

We don’t deny that the mathematics of statistics is 
complex, and carrying out the calculations can be 
time consuming and tedious. However, computer 
software is now available that removes these 
barriers by allowing collected raw data to be entered 
directly into the software programme which will then 
generate the results of a statistical test. Thus the 
scientist only needs to know the type of statistical 
treatment that his or her data requires and to be 
able to understand the computer’s output when that 
treatment is applied. In this booklet we will help you 
do that for a range of very-commonly encountered 
types of data. 

Collected raw data needs to be processed in some 
way so that we can make sense of our results. 
Results may be averaged, counted in different 
categories, or percentages and ratios calculated.
We can also visualise our results by displaying 
them in tables, graphs, charts or diagrams. All of 
these help us to make sense of our results and to 
see patterns and trends from which we can draw 
conclusions. If you are doing these things already, 
then you are carrying out what people would describe 
as descriptive statistics.Statistical tests, what some 
people would call inferential statistics, provide us 
with more information that these other methods of 
analysing results cannot provide. These two types 
of statistics are often complementary and together 
can offer a compact but effective description of your 
data. In order to select the best treatment for your 
data, you need to be able to categorise the nature 
of your data, and we tackle that in the next section. 

MEASURING VARIABLES

Variables are the traits that we measure in an 
experiment or field study. Variables may be 
quantitative or qualitative.

Quantitative variables are measured on a linear 
numerical scale. The scale may either be continuous 
(where the variable may take any value on the scale: 
e.g. mass, time, temperature) or discrete (where the 
variable is measured in whole numbers e.g. number 
of heart-beats per minute, number of eggs laid). 
Although discrete variables are measured in whole 
numbers it is acceptable to express derived data, 
such as the mean, as a fraction (for example 2.4 

The introduction deals with different types of experimental designs and the data they 

produce - a vital consideration when deciding on which statistical test to use for your data.
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children per family). For derived discrete data the 
mode (most frequently occurring value) might be a 
more useful statistic than the mean. For example 
town planners might find the mean family size of 
2.4 children a useful statistic when planning the 
need for primary schools in an area, but the mode 
of 2 children per family might be more useful when 
planning the number of rooms in houses to be built. 
The statistical treatment of quantitative variables is 
dealt with in Chapters 1, 2 and 3.

Qualitative variables are measured as counts in 
separate categories (e.g. the numbers of each 
fish species in a pond, the numbers of males and 
females in a group, the numbers of pink and white 
flowers in a sample of plants). Care should be taken 
to ensure that categories are mutually exclusive so 
that any one individual can only be allocated to one 
category. Such categorical data can be processed 
to produce frequencies, ratios or percentages to 
compare the counts in each category. Categorical 
data can also include measurements on an ordinal 
scale where the categories are ranked in order 
of magnitude, for example a five point scale to 
describe the abundance of an organism (1 = rare, 
2 = occasional, 3 = frequent, 4 = common, 5 
= abundant). These are sometimes referred to as 
ranked variables. The points on an ordinal scale are 
not at even intervals, therefore it is not a numerical 
scale (although at first glance it may look like one) 
and so the data has to be treated as categorical 
data. In our abundance example, a species scored 
as 4 is not necessarily twice as common as another 
species that is scored as 2. To make this clear, the 
values “1” to “5” in the scale above are arbitrary; 
we could have coded them as “0” to “4” or even 
“A” to “E”. It is for this reason that such variables 
are different from a variable like for example “number 
of eggs in a bird’s nest”. The statistical treatment 
of categorical data is dealt with in Chapter 4.

VARIATION AND TRUE VALUES

Random variation is everywhere in biology. It 
is unlikely that any two individuals will have the 
same measured value for any variable. So how 
do we determine the representative value for a 
large collection of individuals? For example, how 
do we know what the typical height of 11-year 
old girls in Scotland is, or the typical size of a 
Scottish agricultural field? We need to measure a 
representative sample of individuals to determine 
the average measurement and the extent of the 
variation about that average. A representative sample 
is a sample that would be expected to show very 
similar average measurement and variation about 

the average as the whole population. Describing 
a sample of measurements in this way is the 
substance of Chapter 1. So to understand the 
heights of Scottish 11-year-old girls we don’t have 
to measure all 45 000 of them; rather we just need 
to measure a representative sample of them. One 
of the key skills of experimental design is being sure 
that your sample is truly representative. 

When dealing with variation in measurements we 
need to make an important distinction between 
the variation between repeated measurements on 
one individual and measurements on a sample 
of different individuals (replication). Repeated 
measurements on one individual will show any 
variation in our measurement method (sometimes 
called measurement or systematic error). 
Measurements on a sample of different individuals 
(replication) will show the variation between 
individuals (sometimes called natural variation 
or random error). Be wary of confusing repeated 
measurements on one individual and replication 
where you measure several different individuals; 
failure to distinguish between these is a common 
error when analysing results. For example, if we 
wanted to compare the energy intake of boys and 
girls through use of a food diary we might expect 
that a given individual will vary quite a lot from day 
to day so we might ask each individual to record 
their food intake every third day until we have ten 
repeated measurements for that individual. Our 
data point for that individual will be their average 
daily intake. This gives us a better description of a 
given individual’s characteristic intake; in effect the 
repeated measurements allow us to improve our 
measurement of that individual. However, to make 
a valid comparison between boys and girls we need 
to replicate this procedure across several boys and 
several girls. Our number of independent data points 
will be equal to the number of children in our study, 
irrespective of how many repeated measurements 
we have on each. 

If a set of repeated measures on one individual shows 
a small degree of variation then a small number 
repeated measurements should lead us to a good 
estimate for that individual; if the degree of variation 
between the measurements is large then a greater 
number of repeated measures will be required. A set 
of close results that show little variation is referred 
to as precise. However such a set of results may not 
be accurate. That is they may not cluster around the 
true value, perhaps due to a calibration error in the 
measuring equipment so that all the results show 
a similar degree of error. This type of inaccuracy is 
referred to as bias or systematic error. Although such 
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results will not lead to the true value, any comparison 
between samples will still show the trends in the data 
as the measurement error or bias is the same for each 
sample. The diagram (Figure 1) shows the relationship 
between accuracy and precision.
 
We would expect repeated measurements of the 
height of a single child to show greater precision 
than their daily energy intake. Any difference in 
measurement should be very small if we measure 
them carefully, thus we would practically only 
measure a child’s height once in most studies. 
In our energy intake study if we mistakenly used 
a table that converted different amounts of food 
into kilocalories rather than joules, but recorded 
our fi nal results as if they were in joules, we would 
introduce bias into the results. Although our results 
would have a systematic error (they would be precise 
but not accurate) we could still potentially detect 
any difference between boys and girls although 
our values for energy intake would be incorrect. In 
a similar way if a set of replicates shows a large 
degree of variation in their measured values then 
we will need a relatively large sample to get close to 
the true value. If the variation between replicates is 
small then a low number of replicates should lead 
to the true value. We can determine the approximate 

number of replicates required to get close to the true 
value by starting with a small number of replicates, 
calculating the mean and then adding further 
replicates and recalculating the mean (a cumulative 
mean). Once the cumulative mean does not alter 
then we probably have suffi cient replicates to give 
a true value. The same holds true for ecological 
sampling - once the cumulative mean of your samples 
no longer changes then your number of samples is 
likely to be representative of the whole population. 

TYPES OF EXPERIMENT

Because of variation we rarely measure one 
individual in an experiment or fi eld study; rather 
we measure a group of individuals. We refer to the 
measurements we collect from such a group of 
individuals as our sample. This sample may be the 
measurements on a group of individuals collected 
in a fi eld study or the replicates of an experimental 
treatment. Too often in biology we simply average 
the measurements in a sample without exploring 
the nature of the data more fully. This analysis of 
our sample can be considered as an ‘experiment’ 
in its own right and often comprises an important 
fi rst part of any biological study. Dealing with such 
data is covered in Chapter 1.

Figure 1 - Target diagrams illustrating accuracy and precision.

Accurate and precise

Accurate but not precise 
(shows range or random variation 
but mean is close to true value)

Accurate and precise Precise but not accurate 
(shows bias or systematic error)

Neither accurate nor precise
(shows random and systematic error)
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Often in biology we want to make comparisons 
between two or more different samples. These 
might be samples collected from different areas in 
a field study, for example leaf litter from deciduous 
and coniferous woodland; or they may be different 
treatments in a laboratory experiment, for example 
algae grown in the presence of different pollutants. 
The statistical analysis of the data from these types 
of experiments is covered in Chapter 2.

Another common type of biology experiment is where 
we measure two variables for each individual in a 
sample to see if there is a relationship between 
one variable and the other. For example we could 
measure the number of ‘eye spots’ on a male 
peacock’s tail feathers and the number of females 
that they mate with. Such a study is a correlation 
or association study; that is we are not trying to 
determine cause and effect, we are simply interested 
to see if there is a relationship between the two 
variables. In a correlation study we make no attempt 
to control any other potentially confounding variables 
that might affect (or be the cause of) the relationship 
between the two variables being measured. Such 
studies are still valuable, as the variables are 
measured in a ‘real life’ (in vivo) situation rather than 
in a manipulated laboratory (in vitro) setting where 
the experimenter may create unintended effects.
To determine cause and effect we use a controlled 
(manipulative) study. Here we attempt to control, 
or failing that measure, any potentially confounding 
variables so that so that we can eliminate or take 
into account their effect. We also set (manipulate) 
one of the variables (the independent variable) and 
measure the other variable (the dependent variable) 
so that we can determine the effect the set variable 
has on the measured variable. Chapter 3 deals with 
the statistical analysis of correlation and cause 
and effect biology experiments. However if the set 
variable in a cause and effect experiment has a 
small number of values (say 4 or less) it is better 
considered as a categorical variable and we should 
use the methods in Chapter 2.

All of the above types of experiment involve 
quantitative variables measured on a linear scale. 
Where we are dealing with qualitative variables, our 
collected data will be counts in each category. For 
example, we might want to count the number of 
birds of different species that visit feeding stations 
with different seed types to determine their food 
preferences. The statistical analysis of this type of 
data is dealt with in Chapter 4.

CHOOSING YOUR STATISTICAL TEST

Our previous sections should help you to choose a 
suitable statistical test for your experiment. First, 
decide whether you are dealing with quantitative or 
qualitative (categorical) data. Then decide on what 
type of experiment you are doing. Finally take into 
account the number of values you will have for your 
variables. At this point you might want to reconsider 
the design of your experiment so that it is suitable 
for statistical treatment. The time to decide upon 
a suitable statistical test is at the design stage of 
your experiment, not when the experimental work 
is complete; by then it may be too late to identify a 
suitable statistical treatment for your data.

To help you decide on which statistical test to use we 
have summarised the nature of the variables dealt 
with in each of Chapters 1 to 4 at the beginning 
of each Chapter and described what each Chapter 
does. We have also summarised the information here 
and contents of Chapters 1 to 4 in the Statistical Test 
Finder flow chart in Appendix 1.

DEALING WITH CHANCE AND UNCERTAINTY

Statistics help us deal with uncertainty. Imagine we 
tossed a coin 100 times, we would expect roughly 
50 heads and 50 tails, but we know that random 
chance means that even if the coin was unbiased 
we would not necessarily expect exactly 50 heads.
If we observed 51 heads and 49 tails then we would 
probably just put the difference down to chance; we 
wouldn’t worry that the coin was biased. Conversely, 
if it produced 90 heads and 10 tails, we probably 
would be pretty convinced that it is biased towards 
heads. However, if it is 60 heads and 40 tails, is that 
sufficient evidence that the coin is biased? Here two 
people might disagree based on their gut feelings. 

Image: Goldy/FreeDigitalPhotos.net
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Statistics offers us something more objective than 
our instincts to help us decide; in the case of this 
coin-tossing experiment the chi-squared test that we 
talk about in Chapter 4 is just the test we need. 

It is important to realise what statistical tests can 
and cannot do. In the case above, a chi-squared test 
will not tell you for certain that the coin is biased or 
unbiased. The statistical test gives you a p-value and 
it is important to understand how to interpret this. 
A statistical test looks at how surprising your data 
is if the null hypothesis is true. The null hypothesis 
is the assumption that nothing interesting is truly 
happening, so for the coin-tossing experiment the 
null hypothesis is that the coin is unbiased and 
equally as likely to produce a head as a tail (see 
Box 1 for more examples of null hypotheses). The 
p-value is the likelihood of getting data like yours or 
even more extreme than yours if the null hypothesis 
is actually true. For our coin tossing experiment 
where we observed 60 heads this is the probability 
of getting sixty of more heads or sixty of more tails 
from tossing the coin 100 times, if the coin is truly 
unbiased. If we actually do the chi-squared test for 
this experiment we get a p-value of 0.0455. So the 
probability of seeing a result like you have obtained 
(or an even more extreme result) if the coin is 
actually unbiased is only 4.55%. This is less than 

one chance in twenty so feels pretty unlikely, thus 
we would be justifi ed in thinking this coin was quite 
probably biased based on our observations and this 
statistical test. 

The question you are now wondering is how small 
a p-value should be before we get excited. There 
is a convention in science that p-values less than 
0.05 give grounds for rejecting the null hypothesis 
but values bigger than 0.05 do not. So in the case 
above we would say that there is statistical evidence 
to justify rejecting the null hypothesis and suspecting 
the coin is biased. Whereas if we had obtained 
59 heads, then the associated p-value would be 
0.072 and we would conclude that our experiment 
did not provide strong evidence that the coin was 
likely to be biased. 

HOW TO ACTUALLY CARRY OUT 
STATISTICAL TESTS 

Statistical tests can often require relatively complex 
calculations. We would rather that repetitive 
calculations were left to a computer, freeing up your 
time to think about biology. Hence we will suggest 
number of different methods for getting a computer 
to carry out statistical tests for you. 

We think by far the best way for you to carry out 
statistical tests is via a fabulous statistical package 
called R. This is entirely free to download and use 
without any restriction. You can download it onto 
any computer and as many computers as you want, 
you never need to enter any credit card details, you 
will never be charged, and it will never stop working. 
There is no catch. It is also a very powerful and well 
designed package that more and more professional 
scientists use; and not just for statistics, all of the 
fi gures for this booklet were created in R. If you go 
to university, the most commonly used package 
for statistics is R. Don’t be fooled by the fact that 
it is free: R is the Rolls-Royce option for statistical 
analysis. Once you download it and open it, you will 
see a large window with a “>” cursor, just type in 
commands here (and press return after each) and it 
will do all your calculations for you. We will describe 
which specifi c commands to use for different 
statistical tests as we introduce each test. To 
download R simply follow the instructions in Box 2.

BOX 1

More examples of a null hypothesis 
•  If we had an experiment comparing the 

heights of a sample of girls and a sample of 
boys, then the null hypothesis would be that 
there is no difference in average height 
between girls and boys. 

•  If we had an experiment where we compared 
plant growth under three different fertiliser 
treatments, then the null hypothesis would 
be that plant growth was the same under all 
three treatments. 

•  If we had an experiment where we measured 
the height and running speed in a sample of 
children then the null hypothesis is that there is 
no relationship between these two variables, and 
height is in no way a predictor of running speed. 

•  If we trapped fi eld mice and scored each as 
either female or male and as either carrying 
parasites or not, then we could investigate 
whether sex infl uences the likelihood of carrying 
parasites; the null hypothesis in this case is 
that sex does not infl uence likelihood of 
carrying parasites. 
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If for some reason (that we fi nd hard to imagine) 
you don’t like R or can’t download it, we won’t leave 
you high and dry. There are often websites that can 
help you perform statistical tests, and we will point 
you to those. Further, most people will have Excel on 
their computer, and we will also point to its statistical 
capabilities when relevant. But, we promise you 
nothing is easier to use, more powerful, or more 
reliable than R. In particular, R is more reliable than 
many other statistical packages with relatively small 
data sets, a situation that often occurs in school 
biology. It does not have the most attractive of user-
interfaces; but typing in its commands to perform 
simple statistics is not diffi cult; and we will walk you 
through how to do this throughout this booklet. 

BOX 2

How do download R 
1) Go to the R homepage: http://www.r-project.org/

2)  One the left hand panel, just below the title 
“Download”, click on the word “CRAN” to get 
a page of countries.

3)  Scroll down to the UK and click on one of the 
options, e.g. https://www.stats.bris.ac.uk/R/.

4)  Click on the version of R appropriate to your 
computer’s operating system (probably Mac 
or Windows).

5) Click on the “base” subdirectory.

6)  Click on the link to the R setup program 
(e.g. “Download R-2.13.2v for windows”).

7)  When prompted save the programme to your 
computer’s hard drive.

8)  Open the folder, click on the “setup” fi le, agree 
to everything, select default installation, and 
say “yes” to a shortcut icon on your desktop. 

9)  Click on the desktop icon (a big letter “R”) to 
start using R.

Image: Jannoon28/FreeDigitalPhotos.net
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Describing a sample of measurements

In this Chapter we will show you how to:
•  visualise a sample of data in a box plot  

(section 1.1)
•  obtain the range, inter-quartile range, median  

and mean of a data sample using R (section 1.2)
•  draw and interpret a histogram of a sample of 

data (section 1.3)
•  obtain a measure of the central tendency  

(mean or median) of a sample of data using R 
(section 1.4.1)

•  obtain a measure of the dispersion of a  
sample of data (the standard deviation) using R  
(section 1.4.2).

We often measure quantitative variables using a 
numerical scale (for example length, temperature, 
time) on one or more samples of individuals. These 
measurements might be from a sample of individuals 
of a particular species observed in a field study, or a 
set of replicate treatments in an experiment. Statistics 
can help us to describe and make sense of the 
measurements we make on a sample, and this is what 
we explore in this Chapter. These statistics will help us 
to understand the nature of the data we collect, and 
will give us more information from which we can draw 
conclusions from the experiment or field study. 

1.1 DESCRIBING THE COLLECTED DATA

Let us suppose as part of a study we have measured 
the heights of a group of 30 11-year-old girls. Our 
measurements are (in centimetres): 135,146,153,
154,139,131,149,137,143,146, 141,136,154,15
1,155,133,149,141,164,146,149,147,152,140,14
3,148,149,141,137,135. How can we make sense 
of this data? Perhaps the most obvious thing to do 
is to calculate the mean of the data, which will give 
us the average height of the girls in the sample. 
The mean is easy to calculate, it is the total of all 
the values divided by the number of values; in this 
case the mean height is 144.8 cm. Notice that the 
convention is to give the mean to one decimal place 
beyond the actual measurements made. Since our 
measurements were taken to the nearest centimetre, 
we quote the mean to the nearest tenth of a 
centimetre. R can calculate the mean for us, and 
we will show you how to do this later, along with 
some other useful statistics.

The mean still does not give us a great deal of 
information about our sample; it gives us an idea 
of the average height of our girls but not how much 
variation there is around that average. When stating 

This Chapter deals with examining a sample of quantitative data.
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a mean it is also useful to also give the range of 
the data. The range is simply the minimum and 
maximum measurements; in the case of our data 
the range is 131 cm to 164 cm.

Now we know a bit more about our data but we still 
do not have much of an idea about the spread or 
dispersion of the data across the range - are the 
data points evenly spread or are there more to one 
end or the other of the range? One way to have a 
quick look at this is arrange the data in order to 
find the middle value in the range (the median) and 
compare it to the mean. If we have an even number 
of values, the median is the mean of the middle two 
ordered values. The mean or median are sometimes 
called measures of the central tendency of the data; 
if the mean and the median are similar in value then 
we are likely to have a relatively symmetrical spread 
of the data.

The range gives us some idea of the dispersion of the 
data but we can have a closer look at the dispersion 
of the data by using the inter-quartile range, which 
is the two values that enclose the “middle 50%” of 
the sample when we order the values (139-149 cm 
in our case). That is 25% of the values are less than 
139 cm and 25% of the values are greater than 
149 cm. The attraction of the inter-quartile range is 
that it is less sensitive to exceptional values than the 
range is. The sample can be graphically represented 
by a box plot (also known as a box and whisker plot) 
as shown below. 

Figure 1.1 - Box plot of heights of 30 11-year old girls from 
Rottenrow Primary School.



1

8 Statistics for School Biology Experiments and Advanced Higher Projects

As with all our figures, we have generated this in R 
and the code to do it can be found in the appendix. 
The dark bar in the middle of the box tells us the 
median value of our data, whereas the top and 
bottom values of the box give us the inter-quartile 
range. The quartiles are the three values that divide 
our ordered list of values into quarters. The lower 
value of the box is the 1st quartile, the median is 
the second quartile and the upper value of the box 
is the 3rd quartile. You can see that our distribution 
isn’t symmetric, because the median does not lie 
in the middle of the box. The exact meaning of the 
whiskers takes a little bit of thinking about. The 
whiskers extend to the most extreme data points that 
lie within 1.5 times the length of the inter-quartile 
range from the box. Data points that lie beyond the 
whiskers are known as outliers. This definition isn’t 
very easy to use, but the key message is that the 
box tells us about the spread of values of the middle 
50% of the data, and the two whiskers tell us about 
the spread of values in the top 25% and bottom 25% 
of ordered values. What we see in our particular case 
is that there is asymmetry in the values, with the top 
25% being much more spread out than the bottom 
25% (because the top whisker is longer). We can 
also conclude in our case that the data are not very 
spread out because the whiskers extend across the 
whole range of values from 131 cm to 164 cm. This 
will not always be the case, imagine that our tallest 
girl was not 164 cm but 177 cm, then the box plot 
would look like the case as shown in Figure 1.2. 

This shows that box and whisker plots can be used 
to highlight unusual cases (such as our single very 
tall girl). There is a single dot on the plot at 177 cm 

to indicate that there is a single individual that lies 
outside the span of the whiskers. These unusual 
cases are outliers. You can get more than one such 
outlier. We will discuss outliers later in this Chapter. 

In summary, box and whisker plots can be a useful 
way of visualising your data in a compact form. 

1.2 USING R TO PROVIDE SUMMARY 
STATISTICS ON A SAMPLE OF DATA

We can use R to provide a summary of the statistics 
referred to above using the dataset of girls’heights.

We can enter this data into R using commands like 
those below:

first10 <- c(135,146,153,154,139,131,149, 
137,143,146)

second10 <- c(141,136,154,151,155,133,149,
141,164,146)

third10 <- c(149,147,152,140,143,148,149, 
141,137,135)

allheights <- c(first10,second10,third10)

This is not as mysterious as it looks. We need to 
tell R the list of all 30 values in our sample. Here 
we have divided the data into three sub-lists of ten 
values each. R likes you to give it a list as a series 
of numbers (or existing lists) separated by commas, 
with the whole list enclosed in round brackets, then 
the letter “c” in front. You can think of the “c” as 
telling R to connect all the list of values. You can 
call a list anything you like by giving the name that 
you choose (like first10) followed by a less than sign 
immediately followed by a negative sign and then the 
list that you want to assign to that name. You can 
think of these two symbols (<-) as making an arrow 
that points to the name that you want to call that 
list. We do this for all three sub lists of ten, then join 
these three lists together so that allheights contains 
all of our data. If we then type summary(allheights) 
then we get a number of useful statistics, 

R responds with 

  Min.  1st Qu. Median Mean 3rd Qu. Max. 

  131.0 139.2 146.0 144.8 149.0 164.0

Figure 1.2 - Box plot of heights of 30 11-year old girls from 
Rottenrow Primary School, with one very tall girl.
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In general you should probably have at least seven 
bins in your histogram. A good way to decide on bin 
size and number of bins is to record your data in a 
stem and leaf diagram (see Figure 1.5 below). This 
will give you a rough idea of how a histogram might 
look and you can then adjust the interval sizes to 
something that you think will produce a suitable 
histogram. Another useful rule of thumb to use is 
the Rice Rule where the number of bins should 
be around two times the cube root of the number 
of individuals in the sample (2n1/3) where n is the 
number of individuals in the sample (30 in our case). 
This is more of a guide than a hard and fast rule, 
and you might want to alter the number of bins so 
that the boundaries between bins are easy-to-digest 
round numbers like we have in Figure 1.3. 

  
Figure 1.5 - Heights of 30 11-year old girls from Rottenrow 
Primary School as a stem and leaf plot.

The stem and leaf diagram is formed by splitting 
each number into two parts based on the last two 
significant digits, in this case between the tens and 
units. The first column is the group of all the numbers 
beginning with one hundred and thirty, one hundred 
and forty and so on and the second column records 
each individual number. So the numbers in the first 

Figure 1.3 - Heights of 30 11-year old girls from Rottenrow 
Primary School.

Figure 1.4 - Heights of 30 11-year old girls from Rottenrow 
Primary School.
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   Stem Leaves

   13 1 3 5 5 6 7 7 9

   14 0 1 1 1 3 3 6 6 6 7 8 9 9 9 9

   15 12 3 4 4 5

   16 4

Specifically we get the minimum and maximum 
values (and hence the range), the positions of the 
1st and 3rd quartiles (and hence the inter-quartile 
range), the mean and the median. 

1.3 HOW TO DRAW AND INTERPRET 
A HISTOGRAM

It’s always useful to visualise our data. Box plots 
are suitable for relatively small samples of data (say 
sample sizes less than 20) or where we want to 
visually compare two or more samples. For a single 
larger sample of data the most straightforward way to 
visualise the data is with a histogram like Figure 1.3. 
The data shown in this figure are the heights in cm of 
our sample of 30 11-year old girls. 
 
When producing a histogram make sure to give 
an informative title and label the x and y axes. 
Histograms essentially group the data into regular 
intervals also known as bins. Here each bin is an 
interval covering a 5 cm range of heights, and we have 
7 bins (one of which has no-one in it). Where a value 
falls on a boundary between two bins the convention 
in R is that it is rounded down (other packages may 
round up); for example a value of 135 cm is counted 
into the bin 130 - 135. Selecting a good number of 
bins may need some trial and error; if you have too 
few bins then you lose valuable detail about the data, 
but if you have too many then the data becomes too 
scattered and it is difficult to see trends in the data. 
For example, in Figure 1.4 we have used 20 bins and 
we think the trends in the data are more difficult to 
immediately absorb than in Figure 1.3.
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row of the second column are 131, 133, 135 and 
so on. We can see at a glance what a 4 column 
histogram with a bin width of ten would look like; but 
as we should normally have at least 7 columns, it 
looks like 5 cm width bins might be suitable for our 
histogram (just as we used in Figure 1.3).

Let us turn from drawing a histogram to interpreting 
one. The fi rst and useful thing your histogram can 
do is help you spot errors in your measurements. If 
our histogram suggested that one of our girls had a 
height of 13 cm or 650 cm (the height of a giraffe) 
then this would suggest to us that something strange 
has occurred, and we would check to see if we have 
simply mistyped one of the values into the computer 
(in which case we can correct the mistake), or we 
have made a mistake in our original measurement 
or recording of that measurement (in which case 
we can either go back and re-measure the girl in 
question or remove the erroneous measurement 
from our sample). It is perfectly appropriate to 
remove an individual from your sample if this type 
of checking indicates that you have clearly made 
a mistake in measuring them. 

However in a case like ours all the data seem 
plausible and we can use the histogram to get 
a feel for the data. Aspects of the data we might 
be interested in are explored below.

The typical or characteristic value 
In terms of describing the typical or characteristic 
height of girls in our sample, we can see that 
the modal (most common) bin has heights from 
145 cm - 150 cm. But we note that there are more 
girls (14) with heights in lower bins than the modal 
one than in higher bins. So we would expect that 
typically girls are around 145 cm or a little less. 
We would expect the mean or median values of 
our sample to be around 145 cm or a little less. 

The spread of values around that 
characteristic value
We can say that there is relatively modest spread 
of heights in the sample. If the median height is 
expected to be around 145 cm the smallest and 
largest heights are only about 15 cm (about 10%) 
different from that median value. So girls in our 
sample don’t differ by very much from each other 
in height. This is not too surprising, we would be 
surprised if one 11-year old girl was twice as tall as 
another; but if we were measuring swimming speed 
it would not be so surprising if one girl took twice as 
long as another to swim 25 m. 

The degree of symmetry in the distribution 
We can see a bit of a suggestion that the distribution 
of heights is not particularly symmetric. To see 
how scientists describe such asymmetry we need 
to introduce you to some jargon. Firstly, we would 
expect that in any distribution these will be a few 
values that are either extremely high or extremely low 
compared to the rest; the groups of these extreme 
values are called the tails of the distribution. 

For our height data, we can see that the tail of 
extremely high values is further away from the bulk 
of the values than the extremely low tail. In such 
a situation the bulk of values are bunched on the 
left side of the histogram. This is a situation called 
positive skew. However, there are other names for 
positive skew: right-skewed, right-tailed or skewed to 
the right. Whilst it is reasonable to say that our data 
are suggestive of a positive skew, we would be wise 
to be cautious in avoiding putting too much emphasis 
on this, since the tail of extremely high values is 
based on only a single individual. 

Unsurprisingly, the opposite case where the tail of 
low values is further from the concentration of most 
values, and most values are concentrated to the right 
of the fi gure is called negative skew (or left-skewed, 
left-tailed, or skewed to the left). A good example of 
data that we might expect to show negative skew is 
the age at which people die in developed countries 
(see Figure 1.6 below). Most people dying just now 
are aged between 70 and 100; there is a short tail 
of higher values with no-one living beyond 110, but a 
long tail of lower values with small numbers of people 
at all younger ages dying. 

Figure 1.6 - Distribution of ages at death for 100,000 women 
in England and Wales in different years. 
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Any unusual values (outliers)
There is one girl in our sample who is over 160 cm 
tall (Figure 1.3), and is at least 5 cm taller than 
anyone else in the sample. This is noteworthy, but 
her height isn’t sufficiently far from the bulk of the 
data to consider that our measurement should be in 
question.

In summary, plotting a histogram of any sample can 
give us a good feel for the nature of the data in our 
sample, and can allow us to describe it quite fully at 
least qualitatively. We can complement this with a 
number of summary statistics to describe aspects 
of a sample quantitatively (see below) 

1.4 DESCRIBING THE CENTRAL TENDENCY 
AND STANDARD DEVIATION OF A SAMPLE 
OF DATA

1.4.1 Describing central tendency 
(mean or median)

The summary function in R gives us two measures 
of the typical or “average” value of the data: the 
mean and median. Which should we use? A good 
rule of thumb would be to use the mean to describe 
the typical value unless a histogram of your data 
shows that the distribution is very skewed, in which 
case use the median. If the distribution is exactly 
symmetrical then the mean and median will be 
exactly the same; if the distribution is not strongly 
skewed (as in our case), then the two values will be 
similar. In this case, it makes sense to use the mean 
because this is the measure that most people will 
be familiar with. However, if the data are strongly 
skewed then the median is a better description of 
the average than the mean. Imagine if we asked the 
girls in our survey how many pets there were in their 
household, most would likely answer a number like 0 
or 1 or 2, but it’s easy to imagine why one girl might 
respond that there are 500 pets in her household 
since her father is a tropical fish enthusiast. This one 
girl would have a substantial effect on the mean, 
which might be something like 17. But 17 does not 
feel like an useful description of the typical number 
of pets per household, whereas the median will likely 
take the value 1, which does feel like a more useful 
description of the typical number of pets. This is the 
attractive characteristic of the median in general; it 
is much less influenced by extreme values than the 
mean is. 

1.4.2 Standard deviation 

The mean or median are measures of the central 
tendency of the data. The spread of the data 
(sometimes called the dispersion of the data) can be 
described by the range or inter-quartile range that 
we have already discussed in this Chapter. Another 
commonly-used measure of dispersion is called 
the standard deviation. The standard deviation is 
best used to describe the dispersion of a data set 
that is pretty much symmetrical around its mean. 
As a generality, to interpret this measure, we would 
expect for most symmetrical data sets that almost 
all the sample values (in fact, 95% of them) will lie 
within two standard deviations of the mean. A low 
standard deviation means the values are close to the 
mean value and a high standard deviation means the 
values are spread out over a large range. 

You can calculate the standard deviation for our data 
on girls’ heights in R using the sd function. When we 
type sd(allheights) we get the response 

[1] 7.694154,

which means that the standard deviation is 
approximately 7.7 cm. So for our data we would 
summarise the mean and standard deviation as 
144.8 ±7.7 cm. Notice that we round our values 
down to avoid giving the impression that we think 
our measurements are more precise than they really 
are (see section 5.1 for more on this). 

Now in the case of the girls’ heights twice the 
standard deviation is 15.4 cm, and the mean is 
144.8 cm; so we would expect most of our data 
to fall between 129.4 cm and 160.2 cm. This 
pretty much holds true, with only one (3%) of our 
30 measurements being outside this range. Just to 
introduce you to a final piece of statistical jargon that 
you might encounter, the standard deviation squared 
is called the variance of the sample. 

So which measure of dispersion should you use? As 
a second rule of thumb we would recommend that 
if your data shows a symmetric distribution quote a 
mean and give a standard deviation alongside it, and 
if you quote a median give the inter-quartile range too.
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1.5 ADDITIONAL NOTES 

If you can’t or don’t want to use R then all of the 
measures described in this section can be obtained if 
you type your data into Excel. How to do it will vary a 
little depending on exactly what version of Excel you 
have, but Excel is so commonly-used that you will be 
able to fi nd how to do it in a fl ash on the internet, 
just type something like “calculating quartiles in 
Excel 2010” or “calculating standard deviation in 
Excel 2003” into your favourite search engine and 
you will fi nd the answer. 

One last word of caution, all the examples we have 
talked about so far have been data that clumps 
together into a distribution with only one peak. This 
will be true for most datasets, but just occasionally 
we will encounter data that has more than one peak. 
If you imagine being stationed beside an arterial 
road into a major town and logging the times of all 
the cars that pass you, you might expect one peak 
of activity corresponding to the morning rush hour 
and another peak corresponding to the evening rush 
hour. For such data (called multimodal rather than 
unimodal) the measures described in this section 
can be quite misleading. If you draw a histogram 
of your data and it appears to be multimodal 
(have more than one peak) then do not attempt 
to describe the data quantitatively, but present 
the histogram and describe observed trends in 
that data qualitatively only. 

It is also possible to test if the mean or median of 
a given sample is statistically signifi cantly different 
from a specifi c value, and we discuss how to do 
that in this next Chapter. 

1.6 CHAPTER CONCLUSION

Even if your research question involves comparing 
different samples of data, we think your understanding 
of your data will be improved if you fi rst explore and 
describe every sample separately using the methods 
described in this Chapter. Anyone reading a report 
on your study will also benefi t from these preliminary 
descriptions of the data before moving on to more 
complicated comparisons between samples. We will 
explore such comparisons in the next Chapter. 
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Comparing two or more samples 
(and comparing one sample with a theoretical prediction)

In this Chapter we will show you how to:
•  get a preliminary feel for the nature of the data by 

comparing box plots of the samples (section 2.1)
•  use the correct statistical test to compare the 

difference between two samples (section 2.2)
•  use statistical tests to compare more than two 

samples (section 2.3)
•  use a statistical test to compare the mean or 

median of a sample to a predicted or specified 
value (section 2.4).

In the last Chapter we considered how to extract as 
much information as we can from a single sample. 
However, many research questions require you to 
compare between samples. For example, we might 
sample both girls and boys to ask whether running 
speeds are different between the two sexes, or we 
might grow ten seedlings in each of four different 
types of compost to explore the effect of rooting 
substrate on growth. This Chapter will look at how 
we can best compare between samples. 

2.1 GETTING A PRELIMINARY FEEL FOR 
THE SAMPLES 

We should begin by taking the approach discussed 
in the last Chapter to get a feel for our data. Imagine 
that we select two lines of fruit fly of the genus 
Drosophila, a resistant strain that shows resistance 
to a pesticide and a control strain that shows no 
such resistance. We sample 25 females from each of 
the two strains and for each measure their fecundity 
(reproductive rate) as the mean number of eggs laid 
per day over the first 14 days of life. We could type 
the data into R using the code below. 

resistant <- c(12.8,21.6,14.8,23.1,34.6,19.7, 
22.6,29.6,

16.4,20.3,29.3,14.9,27.3,22.4,27.5,20.3,38.7, 
26.4,23.7,26.1,29.5,38.6,44.4,23.2,23.6)

control <- c(35.4,27.4,19.3,41.8,20.3,37.6, 
36.9,37.3,

28.2,23.4,33.7,29.2,41.7,22.6,40.4,34.4,30.4, 
14.9,51.8,33.8,37.9,29.5,42.4,36.6,47.4)

summary(resistant)

summary (control) 

For the resistant strain

    Min. 1st Qu. Median Mean 3rd Qu. Max. 
  12.80 20.30 23.60 25.26 29.30 44.40 

And for the control strain

   Min. 1st Qu. Median Mean 3rd Qu. Max. 
 14.90 28.20 34.40 33.37 37.90 51.80

From this we see that in both cases the mean and 
median are relatively similar, suggesting both samples 
are at least approximately symmetric. The inter-quartile 
ranges are broadly similar is length, suggesting that 
the spreads of values are similar in each case. Since 
the samples are not strongly asymmetric, we can ask 
R to get the standard deviations for the two samples 
by using the commands sd(resistant) and sd(control): 
yielding SD values of 7.8 and 8.9 respectively. This 
suggests that the spread of values might be a little 
higher in the control group but not by much. By 
comparison the mean and median are substantially 
higher for the control group than the resistant group. 
We can see these effects more clearly if we also plot 
the data using box plots for the two groups alongside 
each other. 
 

This Chapter deals with comparing two or more samples of quantitative data. If you wish to compare 

two or more samples of qualitative (categorical) data refer to Chapter 4.

Figure 2.1 - Daily number of eggs produced for 25 female 
fruit flies from each of resistant and control strains.
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It would seem reasonable on the basis of our 
preliminary examinations to formally test whether 
on average resistant females are less fecund than 
control ones; that is explore if selection for pesticide 
resistance also selects for reduced fecundity. We 
tackle such testing in the next section. 

2.2 A STATISTICAL TEST FOR A DIFFERENCE 
BETWEEN TWO SAMPLES 

A statistical test that can be used for any two 
independent samples is the Wilcoxon rank sum test 
(sometimes called the Mann-Whitney U-test). This is 
a good general test to use as it ranks all of the data 
in order and then adds the ranks in each sample and 
then compares the total sum in each sample. This 
makes the Wilcoxon rank sum test suitable for small 
samples where we are not sure what the underlying 
shape of the data would be if we could get a big 
sample - a situation that often applies in school 
biology experiments. In our case this tests the null 
hypothesis that selection for resistance has no effect 
on fecundity. To implement this in R we simply type 
the additional command

Wilcox.test(resistant,control), 

and this will generate the following output:

Wilcoxon rank sum test with continuity correction

data: resistant and control 

W = 156.5, p-value = 0.002547

alternative hypothesis: true location shift is not 
equal to 0 

Warning message:

In wilcox.test.default(resistant, control):

cannot compute exact p-value with ties

We can safely ignore the warning message. All that 
matters to us is that the p value (0.002547) is less 
than 0.05. Thus we have evidence to reject the null 
hypothesis. Since on the basis of our graphing and 
summary statistics the biggest difference seems to 
be in central tendency rather than dispersions or 
shapes of the distributions, we can conclude that 
the median daily fecundity is statistically significantly 
lower in the resistant strain than in the control strain. 

As a result of how the Wilcoxon test actually works, 
the key thing to remember is that we should discuss 
any differences that this test shows up in terms of 
medians and inter-quartile ranges, rather than means 
and standard deviations. 

There is an alternative test (called a t-test) that 
can be used if the data approximates to a normal 
distribution. The word normal has a special meaning 
in statistics, and refers to a special type of distribution 
of data that when plotted as a histogram has the 
shape shown in Figure 2.2. 

The key properties of the normal distribution are 
that (i) it is symmetric, (ii) it has a single peak, and 
(iii) values cluster strongly around the peak value 
so that most of the data are relatively close to the 
mean value but with smaller numbers of values being 
significantly lower or higher. These properties are 
often summarised as suggesting that the histograms 
of the samples should be shaped like a church bell. 
The t-test compares the differences between the two 
means relative to the spread of their values. If the 
spread of values between the two samples overlap 
considerably then the difference between the two 
means is less likely to be significant than if there 
were only a small degree of overlap between the 
two sets of values. Let us produce histograms of 
our two distributions (Figure 2.3). 

Surprisingly, there is no hard and fast rule for how 
similar to a perfect normal distribution histograms 
should be for a t-test to be appropriate. Perhaps 
even more surprisingly to you, most practicing 
scientists would probably say that the two 
histograms in Figure 2.3 were close enough. 

Distribution plot

Figure 2.2 - A normal curve.
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If we simply type t.test(resistant,control) then R 
gives us the following output: 

Welch Two Sample t-test

data: resistant and control 

t = -3.4251, df = 47.087, p-value = 0.001283

alternative hypothesis: true difference in means is 
not equal to 0 

95 percent confidence interval:

 -12.882696 -3.349304 

sample estimates:

mean of x mean of y 

25.256    33.372 

The t-test compares the means and the p-value 
relates to the null hypothesis that the means of 
the two samples are the same. In our case the low 
p-value gives us grounds to reject this hypothesis 
and conclude that we have statistically significant 
evidence that pesticide resistance affects mean daily 

fecundity. We can see from our earlier investigation 
that this effect seems to be that pesticide resistance 
reduces fecundity.

So which of these two tests should you use? The 
Wilcoxon test is always valid, and so should probably 
be your default option. The t-test is more powerful 
(more able to detect differences that exist between 
the samples) if the samples are reasonably close to 
a normal distribution, but its p-values are unreliable if 
even one of the samples is too different from normal. 
Since there is no simple rule for deciding when a 
sample is close enough to normal, then you should 
use the t-test with caution. You should use it with 
even greater caution if using a package other than 
R: R uses a clever version of the t-test which does 
not mind if the two distributions have quite different 
dispersions, this is sometimes called the Welch test 
or the unequal variances t-test. Most packages do 
not use this version, instead using a simpler version 
that assumes the two distributions have similar 
dispersions. Using this simpler version when one 
sample is more spread out that the other can lead 
to unreliable p-values. 

The t-test is available in Excel. You can use your 
search engine to find online tutorials on how to 
implement it in your particular version. You should 
select the “two-sample assuming unequal variances” 
option. For the other test we recommend using an 
on-line calculator if you don’t want to use R. Just 
type “Mann-Whitney U-test calculator” into your 
favourite search engine to find some. One that we 
found that is easy to use is http://vassarstats.net/
utest.html. 

2.3 COMPARING MORE THAN TWO GROUPS 

Imagine that we selected a third strain of flies which 
had an enhanced susceptibility to the pesticide - so 
that this susceptible strain showed the opposite 
selection of that in the resistant strain discussed in 
the last section. We might reasonably want to test for 
differences in fecundity across all three groups. Let’s 
start by looking at the data as box plots (Figure 2.4).

It looks as though selection either way (for or 
against resistance) reduces fecundity compared 
to the unselected control groups, but is this effect 
statistically significant, and is the fecundity the 
same for both the selected groups. We would like 
a statistical test that explores all these questions. 
The Kruskal-Wallis test can help us do just that, 
you can think of it as the generalisation of the 
Wilcoxon test to more than two groups. 

Figure 2.3 - Histograms of the daily fecundity scores of 
25 randomly selected female fruit flies from the resistant 
and control groups. 
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If we type the following into R

resistant <- c(12.8,21.6,14.8,23.1,34.6,19.7, 
22.6,29.6,

16.4,20.3,29.3,14.9,27.3,22.4,27.5,20.3,38.7, 
26.4,23.7,26.1,29.5,38.6,44.4,23.2,23.6)

control <-c(35.4,27.4,19.3,41.8,20.3,37.6,36.9, 
37.3,

28.2,23.4,33.7,29.2,41.7,22.6,40.4,34.4,30.4, 
14.9,51.8, 33.8,37.9,29.5,42.4,36.6,47.4)

susceptible <- c(38.4,32.9,48.5,20.9,11.6,22.3, 
30.2,

33.4,26.7,39.0,12.8,14.6,12.2,23.1,29.4,16.0,
20.1,23.3,

22.9,22.5,15.1,31.0,16.9,16.1,10.8)

kruskal.test(list(resistant,control,susceptible))

Then we get the response:

Kruskal-Wallis rank sum test

data:  list(resistant, control, susceptible) 

Kruskal-Wallis chi-squared = 14.0456, df = 2, 
p-value = 0.0008913

The Kruskal Wallis test tests the null hypothesis that 
all the medians of the different groups are the same. 
In this case, the small value for the p-value suggests 
that the null hypothesis is not true. However, this 
test does not tell us which groups have different 
fecundities from which other groups. To find that 
out we would now have to carry out three Wilcoxon 
tests to compare each group with each of the other 
two groups using exactly the methodology described 
in the last section. It is still worth doing the Kruskal 
Wallis test first, because if the p-value was greater 
than 0.05 we could have concluded that all the 
groups were similar and would not have needed 
to do the additional Wilcoxon tests. 

There is also an extension of the t-test to more than 
two groups - this test is called one-way Analysis 
of Variance or one-way ANOVA. If we type in the 
following commands to R. 

resistant <- c(12.8,21.6,14.8,23.1,34.6,19.7, 
22.6,29.6,

16.4,20.3,29.3,14.9,27.3,22.4,27.5,20.3,38.7, 
26.4,23.7,26.1,29.5,38.6,44.4,23.2,23.6)

control <- c(35.4,27.4,19.3,41.8,20.3,37.6, 
36.9,37.3,

28.2,23.4,33.7,29.2,41.7,22.6,40.4,34.4,30.4, 
14.9,51.8,33.8,37.9,29.5,42.4,36.6,47.4)

susceptible <- c(38.4,32.9,48.5,20.9,11.6, 
22.3,30.2,

33.4,26.7,39.0,12.8,14.6,12.2,23.1,29.4,16.0,
20.1,23.3,

22.9,22.5,15.1,31.0,16.9,16.1,10.8)

allvalues <- c(resistant,control,susceptible)

groups <- c(rep(1,25),rep(2,25),rep(3,25))

oneway.test(allvalues ~ groups)

then we can implement this test. Now these 
commands are the strangest set we ever have to use 
to do a statistical test in this booklet, but they are 
not too strange when we look closely. We end up with 
allvalues being a list of all our 75 fecundity measures. 
We need some way to tell R which particular group 
(resistant, control or susceptible) a given measure 
belongs to; and our list groups does that. The 
expression we use to define groups tells R to make 
a list that starts with repeating “1” 25 times, then 
repeating “2” 25 times, then repeating “3” 25 times. 
So it is a list that is 75 long. The first 25 items on 
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Figure 2.4 - Daily number of eggs produced for 25 female fruit 
flies from each of resistant, susceptible and control strains.
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the list have the same value (“1” ) and that relates 
to the first 25 values on our list allvalues belonging to 
the same group (“resistant”). In a similar way every 
value in the list groups can tell R which of our three 
groups any measurement in allvalues belongs to. 
Our last command asked it to do the statistical test 
using all the data in our list allvalues but splitting that 
list into different samples according to the values 
in groups. When we type in that code, we get the 
following response back from R. 

One-way analysis of means (not assuming  
equal variances)

data:  allvalues and groups 

F = 8.2744, num df = 2.000,  
denom df = 47.564, p-value = 0.0008247

The null-hypothesis under test here is that all the 
means are the same. The small p-value gives us 
cause to reject that null-hypothesis, and we would 
then use three different t-tests to work out which 
means are different from which other means. 

Again, if you don’t like R, then ANOVA is available 
in Excel, it is called “Anova: single factor”, and 
calculators are available online for the Kruskal Wallis 
test, for comparing across three groups we like to 
use http://vassarstats.net/kw3.html.

You can use this approach in theory for comparing 
any number of groups, however imagine you had five 
different groups and ANOVA suggested a difference 
between at least some means. In fact this would 
require 10 different t-tests for you to compare every 
group with every other group. You probably should 
not do all t-tests. All t-tests will be tedious for you 
to perform and for someone reading your report to 
wade through all your results; but more importantly 
such multiple testing carries a risk. Statistical tests 
are good but not perfect, so sometimes they will 
give you a low p-value and make you think there is a 
difference between two groups when there really isn’t 
one. Remember that the chance of this happening 
in any one test is pretty low, so in general we don’t 
worry about it; but when we end up doing ten or 
more similar tests on the same experiment then 
we might need to worry about all the small chances 
adding up. So if you are working with more than 
three groups, think about not comparing every group. 
Rather, on the basis of initial graphing of your data 
and thinking about scientific hypotheses that you 
feel are most important, select a smaller number 
of comparisons to make. As a rule of thumb try not 
to make more comparisons that you have groups. 

2.4 COMPARING THE MEAN OR MEDIAN OF A 
DISTRIBUTION AGAINST A SPECIFIED VALUE

Imagine that you read in a book that, based on our 
understanding of their physiology, healthy fruit fly 
females should produce 40 eggs a day on average. 
We could use our control group to test this prediction. 
The mean and median values for our sample of 25 
control individuals were 33.4 and 34.4 eggs per day 
respectively. These values seem a little lower than 40, 
but are they sufficiently lower than expected to claim 
that we have evidence that our fruit flies are producing 
fewer eggs than expected for healthy individuals? 
We can use the Wilcoxon and t-test to explore this. 
If we type the following into R: 

control <- c(35.4,27.4,19.3,41.8,20.3,37.6,36.9
,37.3,28.2,23.4,33.7,29.2,41.7,22.6,40.4,34.4,
30.4,14.9,51.8,33.8,37.9,29.5,42.4,36.6,47.4)

wilcox.test(control, mu = 40)

t.test(control, mu = 40)

Then we get the following output:

Wilcoxon signed rank test with continuity correction

data: control 

V = 43.5, p-value = 0.00143

alternative hypothesis: true location is not equal to 40 

Warning message:

In wilcox.test.default(control, mu = 40):

    cannot compute exact p-value with ties

    One Sample t-test

data:  control 

t = -3.7061, df = 24, p-value = 0.001103

alternative hypothesis: true mean is not equal to 40

95 percent confidence interval:

29.68092 37.06308 

sample estimates:

mean of x 

    33.372
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The Wilcoxon test produces a p-value related to 
the null hypothesis that the median value is equal 
to 40, the small p-value gives us reason to reject 
this; suggesting that the median is signifi cantly lower 
than 40. The t-test tests the null hypothesis that the 
mean value is 40, and again we have reason to reject 
this based on the p-value. Hence we have reason to 
believe that our control fruit fl ies are producing fewer 
eggs than predicted by previous work. This result 
demonstrates the importance of having a control in 
your experiment rather than depending on results 
obtained in another experiment. It might be the case 
that in your experiment variation in other factors, 
such as temperature or the diet of the fruit fl ies for 
example, may have had an effect on fecundity. 

This approach can be used to test the mean or 
median of any sample against a specifi ed value. The 
specifi ed value might be that observed in a previous 
experiment, or a theoretical prediction. Remember 
that strictly speaking you should only use the t-test if 
the distribution of the sample looks reasonably close 
to a normal distribution. If you don’t want to use R 
your best bet is to type “one sample t-test calculator” 
or “one sample Wilcoxon test calculator” into your 
favourite search engine. 

2.5 CHAPTER CONCLUSION

In this Chapter we have described various ways to 
use null hypothesis statistical testing. An important 
thing to remember is that the p-value of a statistical 
test allows us to infer whether a null hypothesis is 
supported by our data or not. The null hypothesis 
is often that there is no effect (for example that 
there is no difference between two groups). If we 
feel that our data suggests that the null hypothesis 
can be rejected on the basis of a statistical test, the 
statistical test does not tell us what the direction and 
size of the effect is. In our example above our testing 
might tell us that the null hypothesis that fecundity is 
the same in the control and resistant groups can be 
rejected. However, we have to turn to our preliminary 
investigation of the data to describe the nature of the 
effect, in this case we can conclude on the basis of 
the sample means that it appears that selection for 
resistance reduces fecundity from around 33 eggs 
per day to around 25 eggs per day. 

So far we have considered the situation where we 
only measure one trait on each individual in our 
sample, but quite a lot of scientifi c questions require 
us to measure two traits on each sample and look at 
how they are associated; we will explore how to do 
that in the next Chapter.
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Looking for a relationship 
between two measured variables

In this Chapter we will show you how to:
•  draw and interpret a scatter plot of the two traits 

(section 3.1)
•  use a statistical test to measure the strength of 

association between the two traits (section 3.2)
•  produce and interpret a line of best fit by simple 

linear regression (section 3.3)
•  draw a non-linear association in a scatter 

plot(section 3.4).

A common situation in biology is where we have 
measured two different traits on each individual in 
our sample and we want to understand how those 
two traits are related. For example, we might be 
interested in how running speed is related to age 
across a sample of school teachers; or how the 
heights of tomato plants are related to the mass of 
fruit that we harvest from each of them; or how the 
size of different fields are related to the bird diversity 
that we record in each. This Chapter will introduce 
the tools needed to explore this situation. 

Notice that here we are measuring two variables. 
There is not a variable set by the experimenter (the 
independent variable) and one that is measured 
(the dependent variable) as there is in a controlled 
experiment to investigate cause and effect. 
Rather we are exploring if there is a correlation or 
association between the two variables. If there is a 
relationship, we cannot say for sure which variable 
is affecting the other or indeed if there is a third 
variable that is affecting them both. Although as a 
result of our correlation study we may be able to 
suggest a hypothesis concerning the two variables 
that can be tested by experiment.

Notice also that we are interested in two measured 
traits, each of which could take on broad range of 
possible values. Imagine we did ask a sample of 
school teachers to run 100 m and we recorded their 
times with a stopwatch. We record with accuracy of 
perhaps a second, but we would expect times to vary 
between perhaps 15 seconds and 40 seconds. So 
for one of the traits (running speed) we would expect 
a broad range of possible values. Since teachers 

might be as young as 25 or as old as 65, if each 
provides you with their age to the nearest year then 
for the second trait (age) we would again expect 
a broad range of possible values. In this situation, 
the methods described in this Chapter should be 
an effective way to investigate the data. However, 
if we felt it was potentially embarrassing to ask the 
teachers to reveal their exact age, we might not ask 
them this but instead categorize each teacher as 
either “younger”, “middle-aged” or “older” based 
on our perception of their appearance. In this case 
age no longer takes on a broad range of possible 
values but is restricted to three possible categories; 
we can still explore whether there is a difference 
in characteristic running speeds between the three 
categories - but now the methods introduced in 
Chapter 2 would be the best approach to use. As a 
general rule of thumb, you should switch to using the 
methods introduced in Chapter 2 if one of the traits 
that you measure on each individual in the sample 
has less than five values. If both traits are restricted 
to such a small number of values then we will discuss 
how to handle data of that sort in Chapter 4. 

However, let us now focus on the situation where both 
measured traits are quantitative variables that can 
take on a broad range of numerical values. As always 
we first encourage you present your data graphically. 

3.1. HOW TO DRAW AND INTERPRET 
SCATTER PLOTS

In Chapter 1 we looked at the heights in cm of thirty 
11-year old girls, these heights were 135, 146, 153, 
154, 139, 131, 149, 137, 143, 146, 141, 136, 
154, 151, 155, 133, 149, 141, 164, 146, 149, 
147, 152, 140, 143, 148, 149, 141, 137 and 135. 
Imagine that we now recorded the mass of each of 
these girls to the nearest kilogram and got the values 
for each individual girl (in the same order as the 
heights above) as 26, 33, 55, 50, 32, 25, 44, 31, 
36, 35, 28, 28, 36, 48, 36, 31, 34, 32, 47, 37, 46, 
36, 47, 33, 42, 32, 32, 29, 34 and 30. We might 
expect that taller girls are also heavier, one way to 
explore this would be to plot the data as a scatter 

This Chapter deals with looking for a relationship between two traits that are quantitative 

variables measured for each individual in a sample. If one of your variables is qualitative or 

if the number of values is less than five, then refer to Chapter 2. If both your variables are 

qualitative or have less than five values then refer to Chapter 4.
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plot. Here we select one trait to be our x-axis and 
the other as our y-axis (there is no convention as 
to which trait should be on which axis as we do not 
have a dependent and an independent variable) and 
plot a point for each individual in the sample; for our 
data this is shown in Figure 3.1.

Notice our graph has an informative title and 
labels for both axes that explain the units. It does 
seem from visual inspection of the graph that as a 
generality taller girls are heavier; although we note 
that this is only a general trend and clearly factors 
other than height influence mass, so it would be 
possible to find two girls in our sample where the 
taller one is lighter. We can see from our graph why 
we use the term scatter plot. If there was a strong 
correlation between the two traits, the symbols on 
the graph would be close to a straight line (a linear 
association). In our case all the girls on our sample 
do not fall on a single line, but are scattered around 
such a line. 

It seems clear with our data that there really is a 
trend for taller girls to be heavier. Another way to 
say this is that there is a positive association 
between our two variables. You can also have 
negative associations, where higher values of one 
trait are associated with lower values of the other. 
For example, if we plotted body mass and litter size 
for a sample of different mammal species we might 
expect to find a negative association where those 
species with high body mass produce generally 
fewer offspring at one time. 

Figure 3.1 - Scatterplot of the height and mass of a sample of 
30 11-year old girls from Rottenrow Primary School.

For other data-sets two people might disagree on 
whether they can see evidence of a positive or 
negative trend in the data. It would be useful to 
have some type of objective measure of this, and 
we introduce such a measure in the next section. 

3.2 TESTING FOR LINEAR ASSOCIATION 
(PEARSON CORRELATION) 

If we have two traits measured on each of a sample 
of individuals then we can use Pearson’s product 
moment correlation coefficient to measure the 
strength of association between those two traits. 
It is very easy to implement this in R through the 
cor.test function, for our data we simply type 

heights <- c(135,146,153,154,139,131,149, 
137,143,146, 141,136,154,151,155,133,149, 
141,164,146,149,147,152,140,143,148,149, 
141,137,135)

masses <- c(26,33,55,50,32,25,44,31,36,35, 
28,28,36,48,36,31,34,32,47,37,46,36,47,33, 
42,32,32,29,34,30)

cor.test(heights,masses)

and R will respond with 

Pearson’s product-moment correlation

data: heights and masses 

t = 5.8631, df = 28, p-value = 2.647e-06

alternative hypothesis: true correlation is 

not equal to 0 

95 percent confidence interval:

0.5215983 0.8699620 

sample estimates:

    cor 

0.7423653

The most important number in this output is the 
last one (approximately 0.74), this is the estimate 
of Pearson’s product moment correlation coefficient 
for our data. Since this measure has a long name, 
it is sometimes shorted to Pearson’s r or just even 
just r. Pearson’s r will always take a value between 
-1 and 1. In our case it is a positive value, indicating 
that the data are suggestive of a positive association. 
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The closer the value is to either 1 or -1 the closer the 
points on our scatter plot would be to a single straight 
line. If r were one then all the individuals in our sample 
would fall perfectly on a single straight line. 

Imagine if we also measured leg length of each girl 
and found that the r value between height and leg 
length was higher (say 0.85), than between height 
and mass (0.74). What could we conclude? This 
would suggest that height is a better predictor of leg 
length than of mass. That is, if we know an 11-year 
old girl’s height we would be more confident about 
our ability to use this knowledge to predict her leg 
length than her mass. Another way to think of this is 
that the scatter plot for mass against height would 
show more scatter around a straight line that one 
of leg length against height. We will talk about such 
predictions in the next section, but before we do 
that, we note that cor.test also offers us a p-value. 
This p-value is associated with the null hypothesis 
of no association (in our case that a girl’s height 
and mass are entirely unrelated). The p-value is very 
low (2.647 x 10-6), so our data gives us grounds to 
reject this null hypothesis and conclude that the two 
traits are related. Our scatter plot tells us that the 
relationship is likely to be a positive association - 
and this is in line with our expectation based on 
our general knowledge. 
 
3.3 PRODUCING AND INTERPRETING A LINE 
OF BEST FIT (LINEAR REGRESSION)

We have talked in previous sections about how 
closely a scatter of data points might correspond to 
a single straight line, but it would be useful to know 
which particular straight line best represents the 
data. There is a statistical technique called simple 
linear regression that can estimate this line (called 
the line of best fit). This is easily implemented in R if 
we simply type lm(masses ~ heights) then we get 
the following output

lm(formula = masses ~ heights)

Coefficients:

(Intercept)      heights 

 -71.3706      0.7427 

Before we turn to the output, lets demystify the 
input: lm simply calls a function in R, and we need 
to tell that function first the variable to have on the 
y-axis (masses in our case) then the variable to have 
on the x axis (heights in our case), and we separate 
these variables with the ~ symbol. To specify the 

formula for a straight line we need to know the 
intercept (the value of the y-axis when the value of 
the x-axis is zero) and the gradient of the line, and 
the output gives us these (approximately -71. and 
0.74 respectively). This means that if M is the mass 
in kg and H is the height in cm, then the straight line 
that best approximates our data has the formula

M = -71 + 0.74H

(We round these values to two significant digits rather 
than use the very precise values given by R to avoid 
anyone thinking that we were much more precise in 
how we took our measurements that we really were 
- see Section 5.1 for more discussion on this.) 

To see if this seems plausible, we could use this 
equation to estimate the mass of a girl of height 
150 cm say. Substituting H = 150 into the equation, 
gives a predicted mass of 40 kg. Looking at our data 
this seems plausible. We can add our line of best fit 
to our scatter plot. 

The intercept (-71 in our case) is where the line 
cuts the y-axis, but you can see in our scatter plot 
(Figure 3.2) that the line cuts the y-axis at 24. This 
is because we started our x-axis at 130 rather than 
zero to avoid lots of blank space on our graph. If we 
had drawn the x-axis starting from zero, the intercept 
of the line of best fit on the y-axis would be seen to 
be at -71. What we would expect if there truly is a 
straight line relationship between the two variables 

Figure 3.2 - Scatter plot of the height and mass of a sample 
of 30 11-year old girls from Rottenrow Primary School, with 
added line of best fit.
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is that we could pick any section of the line and 
there would be roughly as many data-points above 
that segment of the line as below it. This seems 
pretty much true for our data so we can conclude 
that there is generally a linear association between 
height and mass in our sample of 11-year-old girls 
- we can describe that association by fi nding the line 
of best fi t, and we can describe the strength of the 
association (how close data points lie to the line of 
best fi t) using Pearson’s r. The line of best fi t also 
allows us to predict one variable if we know the other 
(the process of interpolation). But remember that 
we don’t expect all individuals to lie exactly on the 
line. Our best guess for the mass of a girl of height 
150 cm is 40 kg, but this doesn’t mean that we 
expect all girls of that height to be of that mass. 
What it does mean is that is we sampled a few girls 
of height 150 cm we would expect them to have 
a range of masses, but the mean of their masses 
would be close to 40 kg. 

Notice that we can choose which variable to have on 
the x-axis and which to have on the y-axis. It does 
not matter which you pick, but if there is one variable 
you are interested in predicting on the basis of the 
other then the one you are interested in predicting 
should go on the y-axis. 

In fact, Pearson’s r and the line of best fi t are 
linked. If we multiply r by itself, then r2 is called the 
coeffi cient of determination for the line of best fi t. 
This will be a number between zero and one, the 
closer this value is to one, the closer the points on 
our scatter point will be to all falling on the line of 
best fi t. The higher the coeffi cient of determination 
the better the x-variable is as a predictor of the 
y-variable. For example in our case the coeffi cient of 
determination is 0.55 (0.74 x 0.74 = 0.55). There 
is variation between 11 year old girls in their mass 
and this variation can be described by its variance 
(as discussed in section 1.3). If the coeffi cient of 
determination of our line of best fi t is 0.55, then 
55% of the variance between girls in mass can be 
explained by variance between girls in their height. So 
variation between girls in their height can only explain 
about half of the variation between girls in mass. This 
tells us that girls are not all exactly the same shape, 
so height is a useful but not perfect predictor of 
mass; something that agrees with our intuition.

As usual, you don’t have to use R. If you like Excel 
then the CORREL function will calculate Pearson’s r 
for you, and the Regression function in the Analysis 
Toolpak will do simple linear regression. Otherwise, 
just type “correlation coeffi cient calculator” or “line of 
best fi t calculator” into your favourite search engine.

3.4 DESCRIBING NON-LINEAR ASSOCIATION 

Not all relationships between two variables will be 
linear. In maths, physics and chemistry data are 
often plotted on a graph to illustrate a known linear 
relationship or to determine the formula for a linear 
relationship; hence why in these situations a straight 
line (often a line of best fi t) is drawn through the 
plotted points. In biology, experiments where there 
may be naturally occurring variation in the data and 
where uncontrolled confounding variables may also 
be present, things are much more uncertain. This 
is why once the data are plotted we should test for 
correlation using Pearson’s r and, if appropriate, use 
simple linear regression to determine a line of best 
fi t. If these techniques do not give a clear result then 
it is safer to join the plotted points with a series of 
straight lines to visualise any trends or patterns. 
Where you have a graph where you have ‘joined 
the dots,’ you cannot estimate values between the 
points from the graph (interpolation) or beyond the 
measured values (extrapolation). However if your 
plotted data has sections which you think show a 
linear effect we give you some advice below on 
how you could proceed.
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Imagine plotting the heights of humans as a function 
of age for people aged between 5 and 25. You would 
probably expect that perhaps up until age 15 there 
is a steady rise in height with increasing age, but 
from 15 to 25 there is little change in height with 
age. In this case we would expect that a single linear 
relationship would not offer a good description of the 
data. If on plotting your data you fi nd such a non-
linear effect then our advice would be to use your 
plot of the data to split your data up into sub-ranges 
and analyse these separately; so in the case above 
we might split our dataset into those ages 15 and 
under and those aged over 15 and explore those two 
parts of our sample separately. 

You will sometimes encounter even more complex 
patterns of association. Imagined plotting data on 
how often per year people were seen by a general 
practitioner as a function of age. Your expectation 
might be that frequency of visits to the GP will be 
high in the fi rst years of life, but decline to lower 
levels that remain relatively constant through ages 
from around 15 - 45 years before starting to climb 
again in later life. Our advice on tackling such 
complex patterns is once again to fi rst of all plot 
the data and use the visual appearance of the 
plot to allow you to identify sub ranges of the data 
to which the methods proposed here could usefully 
be applied. 

3.5 CHAPTER CONCLUSION

In this Chapter we have focused on situations where 
for each experimental subject in our sample we have 
two measured traits each of which could take on 
broad range of possible values. We recommended 
at the start of this Chapter that you should switch to 
using the methods introduced in Chapter 2 if one of 
the traits that you measure on each individual in the 
sample is restricted to four or fewer possible values. 
In this next Chapter we will discuss how to proceed if 
both traits are restricted to a small number of values. 
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Dealing with categorical data

In this Chapter we will show you how to:
•  present a sample of categorical data in a table 

and bar chart (section 4.1)
•  use a statistical test to examine if the distribution 

of the numbers of individuals in each category of  
a sample is evenly spread (section4.2)

•  use a statistical test to examine if the distribution 
of the numbers of individuals in each category of 
a sample is similar to a theoretical distribution 
(section 4.3)

•  use a statistical test to examine if the distribution 
of the numbers of individuals in each category of 
two samples differ (sections 4.4 and 4.5).

Experiments generally involve study of a sample of 
individuals. Up until now we have been interested in 
how to handle data where you take measurements 
on each individual in your sample to obtain a 
number. This might be the weights of different dogs, 
or the numbers of leaves on different seedlings, 
or the IQ scores of different people. Instead of 
such measurement data, you sometimes gather 
categorical data, where for every individual in your 
sample you see which level of a category they fall 
into. For example, if we trap a sample of field mice; 
we might categorise each individual in terms of their 

This Chapter deals with qualitative (categorical) variables. Qualitative variables provide categorical 

data where individuals are assigned to separate categories.

Table 4.1 - ABO blood groups for samples of children at 
two schools.

sex into one of two levels (male or female). For each 
mouse, we do not obtain a measurement (i.e. a 
number) but rather a categorisation as either male 
or female. Here we are going to explore how you 
can make the most of such data. If you caught the 
mice and sexed them (a categorical variable) and 
measured their mass (a continuous variable) and 
wanted to test whether the sexes differed in their 
average mass then the methods in Chapter 2 should 
help you. 

4.1 PRESENTING CATEGORICAL DATA 

Categorical data lends itself to presentation in a 
table. Imagine that you measure the blood type 
(A, B, O or AB) of samples of children in each of two 
schools (called Churchtown and Milldale). You might 
present the results as shown in table 4.1 below.

School            Blood Type

 A B O AB

Churchtown 80 25 98 12

Milldale 75 42 65 21

Table 4.1 - ABO blood types of samples of children taken 
from two schools.

It is always a good idea to tabulate the data, as 
this tells the reader the exact values, but it might 
be easier for the reader to see trends in the data if 
you also present it graphically in a bar chart, as in 
Figure 4.1. 

Often we process categorical data to show the 
proportions in each category. We can do this either 
by expressing the number in each category as a 
percentage of the whole sample (or as a decimal 
fraction of 1.0), as shown in table 4.2.

School      Blood type

 A (%) B (%) O (%) AB (%)

Churchtown 37 12 46 6

Milldale 37 21 32 10

Table 4.2 - Percentages of ABO blood types of samples of 
children taken from two schools.
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Looking at these three ways of expressing the 
data we can see that across both schools A and O 
tend to be the most common types, with B being 
less common and AB being the least common of 
all. There appears to be a difference between the 
two schools as well, with numbers of A individuals 
being broadly similar between schools, but Milldale 
seems to have a lower fraction of O individuals with 
proportionately more B and AB individuals. 

Note that (in this simple case) by expressing the 
results as percentages (table 4.2) or as a bar chart 
(Figure 4.1) we do not learn much more than by 
looking at the raw data (table 4.1). That is why 
we should consider processing the results using 
a statistical test. This will provide us with more 
information than simply carrying out an arithmetic 
percentage calculation for each category.
Before we leave presentational matters, note that it 
is often useful to provide row and column totals in 
tables of collected data. 

School   Blood type

 A B O AB Totals

Churchtown 80 25 98 12 215

Milldale 75 42 65 21 203

Total 155 67 163 33 418

Table 4.3 - ABO blood types of samples of children taken 
from two schools (with row and column totals).

4.2 COMPARING AGAINST A UNIFORM 
DISTRIBUTION 

A common question to ask is whether your sample 
of individuals is spread evenly across the different 
possible levels of a category (a uniform distribution). 
The chi-squared test is a very flexible statistical test 
for use with categorical data, and can explore this 
question. If in the population of all Scottish school 
children there were equal numbers of individuals 
with all four blood groups, then we would expect 
approximately equal numbers in our total sample 
drawn from these two schools. The randomness 
associated with sampling means that we should not 
expect exactly equal numbers. With a large sample 
size of 418 we would not expect large deviations 
away from uniformity (i.e. from all the counts across 
all the categories being the same). Specifically, if 
it were true that all blood types were equally as 
common in the Scottish school population then 
we should expect approximately 105 individuals in 
each group (418 ÷ 4 = 104.5). This expectation 
that all four groups would be the same size is our 
null hypothesis. Our data suggests that this null 

hypothesis is unlikely to be correct, since the A and 
O groups seem to be a lot more common and the 
B and AB groups a lot less common than expected 
under this null hypothesis. We can test this using a 
chi-squared test. For our example this is very easy to 
do in R, we simply type 

chisq.test(c(155,67,163,33))

and R carries out all the calculations for us and 
responds with 

Chi-squared test for given probabilities

data:  c(155, 67, 163, 33) 

X-squared = 119.5311, df = 3, p-value < 2.2e-16

Remember the important thing for us is whether 
the p-value is less than 0.05. In this case the 
number is so small (2.2 x 10-16 - which R displays as 
“2.2e-16”) that R has given it in scientific notation. 
This is a tiny number, much less than 0.05, so we 
are safe to conclude that we seem to have evidence 
that the null hypothesis that all four blood types 
are equally common in the wider population can 
be rejected on the basis of our data. R has also 
reported the chi-squared statistic (119.5311), and 
the degrees of freedom (3). You don’t need to know 
the specifics, but these values were used to calculate 
the p-value. It’s good practice to quote them 
alongside your p-value , so in this case you might 
write a conclusion along the lines below. 

“If the null hypothesis were true that all blood types 
were equally as common in the Scottish school 
population then we should expect uniformity of 
approximately 105 individuals in each group 
(418 ÷ 4 = 104.5) in this sample. The data in 
table 4.3 suggests that this null hypothesis is unlikely 
to be correct, since the A and O groups seem to be 
a lot more common and the B and AB groups a lot 
less common than expected if this null hypothesis 
were true. This was confirmed by using a chi-squared 
test performed in R which gave the results that chi-
squared was 119.5311, degrees of freedom were 3, 
and the p value was 2.2 x 10-16. This p-value is much 
less than 0.05, suggesting that there is statistically 
significant evidence for deviation from uniformity 
across the four blood types.”
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Extra Notes on using the Chi-squared test 

1)  Chi is a letter in the Greek alphabet, and so you 
will sometimes see chi-squared written as χ2. 

2)  If you don’t want to use R, you can fi nd websites 
to do a chi-squared test for you. The type of test 
we performed above was called a “goodness of 
fi t” test since we tested how well our data fi tted 
the null hypothesis of equal numbers across 
all the categories. If you type “goodness of fi t 
calculator” into your favourite search engine 
then you will fi nd a number of suitable sites. 
One that we fi nd easy to use is http://graphpad.
com/quickcalcs/chisquared2/.

3)  These websites will ask you to input both 
observed and expected values, the observed 
values are those we actually observed in our 
experiment (155, 67, 163 & 33 in the case 
above); the expected values are those we 
would have expected if the null hypothesis of 
uniformity were true (104.5,104.5,104.5,104.5 
in the case above). 

4)  Don’t worry if a website gives slightly different 
values for χ2 and the p-value to those given by 
R for the example above, there are a number 
of very slightly different ways of doing the chi-
squared test. 

5)  Chi-squared tests can be unreliable if your 
sample sizes are too small, so aim to have all 
your observed values greater than 5. 

6)  There is no logical order to our categories, so it 
doesn’t matter to the statistical test what order 
you give the observed values, the answer the 
chi-squared test gives will be exactly the same. 

4.3 COMPARING AGAINST A NON-UNIFORM 
DISTRIBUTION 

Sometimes we might want to compare our pattern 
of observed counts across levels of a category 
with a more complex theoretical prediction than 
uniformity. If we return to our blood type example, 
then there have been many studies of the UK 
distribution of blood types, since such information is 
vital to hospitals that need to have the appropriate 
amounts of different types of blood available for 
transfusions. These studies suggest the following 
distribution across blood types: A (38%) B (10%) 
O (47%) AB (5%). For our total sample size of 418, 
this distribution suggests we should expect to have 
observed the following numbers: A (159), B (42), 
O (196) and AB (21). We in fact observed A (155), 
B (66), O (163) and AB (33). Our observations, 

are pretty similar to the predictions, although 
the number of O individuals is a little low and the 
numbers of B and AB individuals a little high. But is 
this deviation suffi cient to suggest that our sample is 
signifi cantly different from the theoretical distribution 
based on previous studies? Again, we turn to a 
chi-squared test to help. If we enter the following 
code into R then it will do the test for us:

chisq.test(c(155,67,163,33), p=c(38/100,10/10
0,47/100,5/100))

R gives the following output 

Chi-squared test for given probabilities

data:  c(155, 67, 163, 33) 

X-squared = 27.9892, df = 3, p-value = 3.651e-06

The p-value here is very small (3.651 x 10-6 - which 
R writes as “3.651e-06”). From our argument before 
about how to interpret p-values, this suggests that 
our pooled samples from the two schools do seem to 
deviate statistically signifi cantly from the distribution 
of blood types expected on the basis of previous 
studies of the UK population as a whole. 

You can see that previously when testing against a 
uniform distribution, we only had to supply R with a 
list of the values that we observed in our study. Now 
when we are testing against some other distribution, 
we need to tell R what that distribution is, and we 
do this by presenting the distribution as a list of 
fractions. Those fractions should add up to one, 
and should be in the same order as the observed 
values: so the observed value of 155 and the 
fraction 38/100 both relate to blood type A. 

Again if you don’t want to use R the same websites 
that we recommended in the last section will work 
in this case, although they will often ask you to input 
your specifi ed distribution as a list of expected values 
rather than a list of fractions, but it is easy to work 
out these, as we did above. 

4.4 COMPARING SEVERAL DISTRIBUTIONS

Another question you could ask in our blood-test 
study is whether there is a difference in the 
distribution of blood types between the two 
schools. Once again the chi-squared test can do 
this for us. This question involves comparing two 
observed distributions to see if they seem to differ 
in any fundamental way. This involves looking for 
an interaction (sometimes called a contingency) 
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between blood type and school. Essentially we are 
asking if our expectation of a randomly selected 
individual’s chance of being of a given blood 
type should change if we are given the additional 
information of what school they attend. Other ways 
to say this are: 

is the distribution of blood types contingent on school, 

or 

is there an interaction between blood type and school? 

For this reason, scientists often call tables like table 
4.1 a contingency table. We will need to build such 
a table in R and this is done using the following 
command:

data <- rbind(c(80,25,98,12),c(75,42,65,21))

This does look weird but we are listing the two rows 
of the table in the way we have always done: a list 
separated by commas and enclosed in brackets with 
the letter “c” at the front. We ask R to bind those 
rows into a table, and to call that table “data”. When 
we enter this into R, then R doesn’t seem to do 
anything, but if we then type chisq.test(data), then 
it will carry out the test on this table and gives us 
the output

Pearson’s Chi-squared test

data:  data 

X-squared = 13.2767, df = 3, p-value = 0.004075

From this we can conclude that there is a statistically 
significant difference between the schools in the 
distribution of pupils across the four blood types. 
If we inspect the table or figure to help us infer the 
difference between the two schools; it seems that 
Milldale has somewhat higher fractions of B and AB 
individuals and a lower fraction of O individuals. 
We can compare any number of distributions this 
way. Imagine we visited a third school and recorded 
56 A individuals, 23 Bs, 62 Os and 12 ABs, then we 
can simply compare across all three schools by typing 

moredata <- rbind(c(80,25,98,12),c(75,42,65, 
21),c(56,23,62,12))

chisq.test(moredata).

If this was significant that would tell us that there 
was a difference between schools, but the test does 
not tell us what that difference is. That is, it does 
not tell us which particular school is different from 
which particular other school or schools, and what 
that difference is. We just have to infer what that 
difference is likely to be from looking at the numbers 
in a table and/or figure.

If you don’t want to use R then you can find ways 
to analyse contingency tables on the internet. Just 
type “contingency table calculator” into your favourite 
search engine. A good one is http://vassarstats.
net/newcs.html

We are going to leave this blood-test example now, 
but let’s not forget that we are biologists first not 
statisticians. We have found that these schools 
differ from each other in terms of their distribution 
of blood types, and the two schools together seem 
to deviate from the wider UK population. How could 
we explain that?

The most likely explanation lies in that fact that 
different regions of the world have different 
distributions of blood types. What we have noticed is 
that Milldale school children have a higher prevalence 
of the B and AB types. These types are proportionally 
more common in the Indian subcontinent, so our 
guess is that the explanation for our results comes 
from recent immigration to the UK. It is likely that 
Milldale school in particular has a relatively high 
proportion of pupils whose parents or grandparents 
were born in the Indian subcontinent. If you want to 
read more about the ABO blood groups and how they 
vary around the world, then a really good website is 
http://www.blood.co.uk/about-blood/blood-around-
the-world/.

Just to introduce you to nomenclature that you 
might see in textbooks; table 1 has 2 rows of data 
and 4 columns, so you would find it referred to 
as a 2 x 4 contingency table. You could imagine 
redesigning that table so the columns where in a 
different order; or so it had 2 columns and 4 rows; 
neither of those changes would make any difference 
to the outcome of any chi-squared tests you carry 
out on that contingency table. 
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4.5 TESTING FOR AN INTERACTION

In a sense we don’t need this section at all, since 
when we compared two different distributions before 
we were really testing for an interaction. However, 
interactions are so fundamental to so many scientific 
investigations that we think it’s worth showing you 
another example. 

Imagine you wanted to investigate whether there 
was a sex bias in susceptibility to infection by ticks 
in field mice. This is a question about an interaction, 
because you are asking is there an interaction 
between sex and susceptibility to ticks. Another 
way to express this is: you are asking whether 
your expectation of the likelihood of an individual 
mouse having ticks would change if you were 
given information on the sex of the mouse. If your 
expectation would change then this suggests that 
there is an interaction between tick infection status 
and sex; if your expectation would not change then 
this suggests that the two factors are independent 
and there is no interaction. 

Imagine that you go out and collect the data in 
Table 4.3.

Sex  Tick status

 Ticks  No ticks

Male 17  14

Female 25  7

Table 4.3 - The sex and tick infestation status of 63 trapped 
field mice.

Visual inspection of this data might make you 
suspect there is an interaction: 55% of males have 
ticks compared to 78% of females. Following the 
methodology of the last section, we could use R to 
test this statistically using the commands:

data <- rbind(c(17,14),c(25,7))

chisq.test(data)

This gives the following R output:

Pearson’s Chi-squared test with Yates’  
continuity correction

data:  data 

X-squared = 2.8658, df = 1, p-value = 0.09048

The p-value is greater than 0.05, and so our data 
do not provide sufficient evidence to reject the null 
hypothesis of no interaction. That is, we have no 
reason to be confident that the sexes of field mice 
differ in their prevalence of ticks. 

4.6 CHAPTER CONCLUSION

One last note: as mentioned earlier, the chi-squared 
test is unreliable for small sample sizes. This is 
particularly true for 2x2 contingency tables, so do 
ensure all the values in your table are above 5 before 
testing such tables statistically.

We hope you find the chi-squared test an easy-to-use 
and effective tool whenever you have categorical data. 
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Presenting and interpreting 
numerical values

In this Chapter we will show you how to:
•  present numerical values consistent with  

the accuracy of a measurement instrument,  
with appropriate units and in an ordered way 
(section 5.1)

•  make the best use of text, tables and graphs to 
present numerical data (section 5.2)

•  interpret standard error and confidence intervals to 
compare how close the mean value from a sample 
is to the true mean of the population (section 5.3).

5.1 REPORTING NUMERICAL VALUES

Report your results within the limits of sensitivity 
of your measurement device (its resolution). Every 
instrument you use has a level of sensitivity, so 
state what it is. For example, “Crabs were weighed 
on a laboratory balance (Rossiter and sons Ltd; 
Weightmaster 5, +/- 0.05 g).” Report your results 
within this level of resolution and make sure any 
calculated values are in agreement with this precision; 
for example “Mean crab weight was 120.1 g”. Since 
we can only measure to the nearest 0.05 g, it would 
introduce a spurious level of precision to quote a 
mean of “120.11”. 

If we were combining data, say for example we 
were going to weigh the crabs again after a period 
of time and calculate their change in weight; it is 
good practice to retain an additional figure to reduce 
accumulated rounding errors. However the final figure 
should be stated within the limits of the measuring 
device; “Crab mean weight gain was 0.2 g”. 

The same principle applies when converting units. 
If you read in a book that a dinosaur was “about 20 
feet high”, but you want to convert this into metres, 
you should convert it to “about 6 m” not “about 
6.096 m”. It is true that a foot converts to 0.3048 m, 
but we should reflect the level of uncertainty that 
existed in the original description. 

Always give units and be consistent in your units. 
Most things that we measure have units, always 
quote those units every time and be consistent in 
your units. If you are reporting masses don’t flip 
between giving values in grams and kilograms; use 
the same unit every time “Median female mass 
was 99.5 g (inter-quartile range 89.2 g - 120.3 g); 
median male mass was 116.4 g (inter-quartile range 
105.0 g - 135.9 g).”

Be consistent in ordering your results to make life 
easy for your reader. If you are comparing males 
and females across several analyses and several 
graphs, always discuss the males then the females 
in the same order in the text and draw them in the 
same order on graphs. Similarly if you are discussing 
different traits of apples oranges and pears, always 
compare them in the same order for each different 
trait. All you are doing is making life as easy as 
possible for the reader, to minimise the risk of them 
misunderstanding you. 

5.2 USING TEXT, TABLES AND GRAPHS TO 
PRESENT NUMERICAL VALUES CLEARLY

Avoid giving too many numbers in an abstract. You 
will often have to provide a summary or abstract 
at the start of a scientific report, for example the 
Advanced Higher Project Report. This is the first 
thing that people read after your title. The reader is 
looking for a broad overview of the contents of your 
report; they don’t want to get bogged down in detail. 
Hence, don’t go into fine detail like sample sizes 
and p-values. However, it is appropriate to give your 
conclusions quantitatively in general terms. Hence 
you might write “the application of nitrogen fertiliser 
increased yield typically by around 70% although 
there was variation between varieties” rather than a 
very detailed (but harder to remember) description 
like “fertiliser resulted in a mean increase in yield of 
66.3% (range 13.4-130.2%)”. 

Make sure your results section isn’t just a random 
collection of numbers. Your results section should 
have a clear narrative thread through it so the 
reader can understand not just what information you 
are giving them but why you are giving them that 
information. One way to achieve this is to finish your 
introduction with a clear list of the specific issues 
that you want to investigate. For example, you might 
state that you “want to investigate (i) the size range 
of a particular species of locally occurring crab, (ii) 
whether the two sexes differ in size, and (iii) how sex 
and size influence diet choice”.

You could usefully use these three key issues as 
three subheadings of the results section, to introduce 
a clear structure and remind the reader what your 
main aims are. Also, you should strive to write 
sentences in your results section that summarise 
your results, even if these sentences involve a lot of 

This Chapter deals with some general advice on presenting numerical data when you write up 

reports and on interpreting numerical values given by other people. 



5

30 Statistics for School Biology Experiments and Advanced Higher Projects

numbers. This shows the reader that you can ‘see’ 
your results and help them to do so too; see some 
examples below:

We measured the mass of 124 crabs ranging from 
101.1 g to 150.7 g (mean = 110.6 g, standard 
deviation 7.3 g). See Appendix A for a histogram of 
these raw values.

Median female mass was 99.5 g (inter-quartile range 
89.2 g – 120.3 g); median male mass was 116.4 g 
(inter-quartile range 105.0 g – 135.9 g).

Because the two samples we wish to compare did 
not follow a normal distribution, we adopted a Mann-
Whitney U-test rather than a t-test. This suggested a 
significant difference between the two distributions 
(N1 = 60, N2 = 63; U = 27, P = 0.008).

Think about whether you should provide data in text 
form, in a table on in a graph. Ask yourself what you 
want the reader to do. If the reader needs to consult 
specific values then present those values in a table; 
but if what you want them to do is see trends or look 
for relationships then a graph will work better. You 
should never have a table with four of fewer values 
in it, such a small amount of information can more 

directly be given to the reader in a single sentence 
in the text, rather than asking them to stop their 
reading and consult a table. 

Checklist of some things to consider 
about a table
•  Have you given a sufficiently full and informative 

title that the table can be understood without 
reference to the text?

•  If relevant, have you given sample sizes?
•  Are your row and column titles sufficiently 

informative?
• Have you included units of measurement?
•  Have you ordered the rows and columns in a 

helpful fashion and is that ordering consistent 
across tables (if you want the reader to compare 
values in two columns try and place those 
columns side by side)?

•  Can you remove clutter and redundancy  
(e.g. if all the columns are in the same  
units then you could give this unit in the title 
rather than repeating it in every column)?

Compare the two tables below; hopefully you can 
see that the second is much preferable. 

Table 5.1 - Results of the diet and heart rate experiment.

Table 5.1 - Resting heart rate (mean (standard deviation)) measured at three time points after individuals were randomised to 
one of 4 dietary regimes*.

*  Normal diet (Group D), normal diet but avoiding caffeine (Group A), normal diet but avoiding alcohol (Group B) or normal diet 
but avoiding both caffeine and alcohol (Group C). There were 12 individuals in each group, except for the last measurement for 
Group D where N = 11.

Diet  Heart rate (beats/sec) (SD)

 1st 2nd 3rd

A 51 (2.3) 49 (2.2) 48 (2.2)

B 49 (2.5) 49 (2.7) 47 (3.1)

C 48 (3.1) 47 (2.3) 45 (2.3)

D 53 (2.3) 52 (2.1) 52. (2.4)

Diet  Heart rate (beats/sec) (SD)

 1st test (7 days) 2nd test (14 days) 3rd test (28 days)

Diet A (no caffeine) 51 (2.3) 49 (2.2) 48 (2.2)

Diet B (no alcohol) 49 (2.5) 49 (2.7) 47 (3.1)

Diet C (no caffeine or alcohol) 48 (3.1) 47 (2.3) 45 (2.3)

Diet D (control) 53 (2.3) 52 (2.1) 52. (2.4)
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Checklist of some things to consider 
about a graph
•  Have you given a sufficiently full and informative 

title that the graph can be understood without 
reference to the text?

•  If relevant, have you given sample sizes?
•  Have you labelled both axes in a full and  

useful way?
•  Have you included units in your axes labels 

where appropriate?
•  Have you ordered elements in the graph in a 

helpful fashion and is that ordering consistent 
across tables?

•  If you have multiple data types in your graph 
(e.g. circles for males and crosses for males on 
a scatterplot) then make sure this is explained 
in the title or in a legend and make sure you are 
consistent across graphs). 

5.3 USING STANDARD ERROR AND 
CONFIDENCE INTERVALS TO DESCRIBE HOW 
CONFIDENT YOU ARE THAT THE MEAN FROM 
YOUR SAMPLE IS CLOSE TO THE MEAN FROM 
THE POPULATION YOU SAMPLED

5.3.1 What are standard errors and 
confidence intervals? 

Imagine you wanted to estimate the number of 
nettle plants in a local field. In seems too daunting 
to try and count them all. You take a square wooden 
quadrat frame of size 1 m and throw this randomly 
40 times within the field, every time it lands you 
count the number of nettle plants inside the frame; 
from this you calculate an estimate of mean nettle 
density (plants/m2). From Google Earth or an 
ordinance survey map you are able to estimate the 
area of the field in square metres, which you multiply 
by the mean nettle density estimate to come up with 
an estimated number of nettles in the field. This is a 
reasonable but relatively crude measure of the real 
total number of nettles. Imagine you perform this 
calculation and come up with the estimate 18 319. 
We recommend that you present this calculation, but 
then add a sentence saying something like “bearing 
in mind the sources of imprecision in our method, 
we conclude that there are around 18 000 nettles 
in the field.” If you present only the number 18 319 
then the reader might assume that you believe you 
know the exact number, and that it is 18 319, and 
not 18 321 for example. But given the limitations of 

your method, you would not be surprised if the actual 
number was 18 321, but you might be surprised if 
the number was as big as 19 455. Hence, by saying 
you estimate the number to be around 18 000, you 
are suggesting that you would not be surprised if the 
actual number were somewhere between 17 500 
and 18 500. You are showing the reader that you 
have an appreciation for the likely level of precision 
of your techniques. 

Another way to cope with explaining the likely 
precision of your estimated value is to offer the 
reader a range of values that you think the true 
value is likely to lie within. This is called a confidence 
interval. Imagine in the case above you feel that your 
greatest source of error will lie in your estimate of the 
density of nettles rather than your estimate of the 
area of the field. You can quantify this uncertainty 
rather easily since you have 40 estimates of density, 
from which you worked out a mean value. You could 
also work out a standard deviation (see Chapter 1) as 
a measure of the variability across your 40 estimates. 
From this it is easy to work out something called 
the standard error, because this is just the standard 
deviation divided by the square root of the sample 
size (square root of 40 in our case). We can use the 
mean and the standard error to estimate something 
called the 95% confidence interval. This involves two 
numbers either side of the mean which we expect will 
bracket the true value on 95% of occasions. These 
two numbers are simply the mean minus twice the 
standard error and the mean plus twice the standard 
error. We would take these two values for density 
and multiply them by our estimate of area to report 
something like “we estimate that there are around 
18 600 nettles in the field (95% confidence interval 
17 700 - 18 900)”. This tells the reader that they 
should be pretty confident the true number of nettles 
lies between 17 700 and 18 900. Notice that there 
is no such thing as a 100% confidence interval, we 
can never be certain unless we actually go to the 
trouble of counting all those nettles; when we sample 
we have to live with a little uncertainty. But since 
standard error reduces with increasing sample size, 
the more we sample the greater we can expect our 
precision to be. Lastly note that standard error and 
confidence interval are sometimes abbreviated to SE 
and CI respectively. 
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Figure 5.1 - Mean and standard deviation of the heights of 
male and female teachers at Bogstonehall Secondary School.
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might be: and that difference is encapsulated in 
the standard error or confi dence interval. So decide 
whether you are interested in talking about variation 
in the sample, or interested in talking about how that 
variation affects the precision of our sample mean 
when deciding which of these measures of spread 
to use. 

All of these measures of spread can be represented 
in the same way on bar graphs using error bars, as 
shown in Figure 5.1.

The error bars here show the values one standard 
deviation above and below the mean value. Since 
error bars look the same way regardless of whether 
you use them to show standard deviation, standard 
error or confi dence interval, it is essential that you 
state somewhere (most obviously in the title of your 
fi gure) which you are using. Since standard error is 
the standard deviation divided by the square root of 
the sample size, the error bars will look smaller if you 
use standard error rather than standard deviation, 
but that is not a good reason for opting to use 
standard error; your aim is not to show the reader 
as small error bars as possible, but to use error 
bars to explain some scientifi c point to the reader. 

5.3.3 Comparing two confi dence intervals

In Figure 5.1, unsurprisingly, we fi nd that men in our 
sample have a higher mean height than females; 
but we also see that there is variation in both sexes. 
So it is not clear to us whether the greater height 
of men in our sample is statistically signifi cant or 
not. The best way to explore that is with a statistical 
test (as described in Chapter 2), however if you plot 
confi dence intervals as error bars then there are 
some simple rules that will give you a good guide to 
what the statistical test is likely to say. We described 
above how to estimate a 95% confi dence interval 
from the mean, standard deviation and sample size. 
For our example of male and female teachers, if we 
measured their sprint speeds this might look like the 
summary shown in Figure 5.2. 

Here we can see that the 95% confi dence intervals 
do not overlap (the lowest value of one is higher than 
the highest value of the other). When this happens 
it is very likely that a statistical test will suggest that 
there is a statistically signifi cance difference between 
males and females. We cannot be absolutely certain, 
as our method of calculating confi dence intervals by 
doubling the standard error is only an approximation, 
but it is a good guide. 

5.3.2 When are these measures useful?

In Chapter 1 we discussed a range of different ways 
that you could characterise the spread of values in a 
data-set: the standard deviation, the inter-quartile 
range and the range. In this Chapter we have 
introduced two other measures that are related to 
this spread of values: the standard error and the 
confi dence interval. When presenting your results, 
you have a broad choice of ways to describe the 
spread of values. The key distinction is to remember 
that the standard deviation, inter-quartile range and 
range describe the spread of values in our sample; 
whereas standard error and confi dence interval 
describe the consequences of that spread for our 
confi dence in how precisely the mean of our sample 
of individuals approximates the true mean value of 
the population that we sampled. You can image that 
if all 11-year-old Scottish girls were very similar in 
height then the mean height of a sample of 50 girls 
would be very similar to the mean value we would get 
if we measured all the girls in Scotland. In fact, there 
is quite a bit of variation between girls, and that will 
imply that our mean based on the sample is less 
likely to be very close to the true mean; but we can 
use the variation in our sample (together with the 
sample size) to estimate how much this difference 
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If the 95% confi dence limits overlap a little bit then 
it is still likely that the statistical test will suggest a 
statistically signifi cant difference; but if they overlap 
by quite a lot then it likely will not. We need a rule of 
thumb for “overlap a little”. If both sample sizes are 
at least 10, and one confi dence interval isn’t more 
than twice as long as the other, then the following 
rule works quite well. 

If the amount of overlap is less than a quarter of the 
length of the smaller confi dence interval, then the 
two means are probably signifi cantly different. 

Figure 5.2 - Mean and 95% confi dence interval of the 
sprint speeds of male and female teachers at Bogstonehall 
Secondary School.
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So if in the case above we had a different group of 
23 men and 34 women and the confi dence intervals 
were 9.1 - 7.7 m/s for men and 8.1-6.6 m/s for women; 
then we can use the rule of thumb because the 
sample sizes are big enough and the lengths of the 
confi dence intervals (1.4 and 1.5 m/s) are suffi ciently 
similar. The size of the overlap is 8.1-7.7 = 0.4 m/s. 
This overlap is 29% of the length of the smallest 95% 
confi dence interval, so our best guess is that the p 
value in a statistical test is will be just a bit bigger than 
0.05, from which we would conclude that we do not 
have statistically signifi cant evidence of a difference 
in this case between men and women. 

You might wonder what use this estimation method 
is: why not just do the statistical test. We think it 
is useful in two ways, sometimes when reading 
someone else’s report they will not have given the 
test, or provided all the data to let you carry out 
the test yourself; but if they give you a bar chart 
with error bars then this method offers you a good 
approximation to the statistical test. Secondly, 
in your own work if you get a result you were not 
expecting from a statistical test comparing two 
means then this method offers you a quick check. 
If this method suggests that the result of your 
statistical test really is surprising then you could go 
back and check that you have input all your data 
correctly and performed the test correctly. 

5.4 OUR FINAL THOUGHTS 

As we said at the start, making the most of your 
data once you have collected it (using summary 
measures, tables, graphs and statistical tests) should 
not be a daunting part of a biology experiments or 
research project. We really hope this booklet helps 
you increase your confi dence with statistics, and 
helps you make the very best of your hard-won 
data. Good luck! 
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APPENDIX 1

Statistical test fi nder
The fl ow chart below summarises the information in the ‘Choosing your statistical test’ section 
of the Introduction and the contents of Chapters 1, 2, 3 and 4.

Appendices

Are you dealing with quantitative or qualitative variables?

Quantitative

Go to Chapter 1:
• Draw a box plot of the data.
•  Find the range and inter-

quartile range.
•  Find the mean and/or median.
•  Consider drawing a histogram.
• Find the standard deviation.

Go to Chapter 4:
• Draw a table of the data.
• Draw a bar chart of the data.
•  Use chi-squared test to examine if 

the distribution in each category is 
evenly spread.

•  Use chi-squared test to examine if the 
distribution in each category is similar 
to a theoretical distribution.

•  Use chi-squared test to examine if the 
distribution in each category for two 
samples differs.

Qualitative

Are you dealing 
with a single sample 
of measurements?

Do you want to 
compare two or 
more samples of 

quantitative data?

Go to Chapter 2:
•  Draw box plots of your samples.
•  For two asymmetric samples use 

Wilcoxon rank sum test.
•  For two symmetric samples use t-test.
•  For more than two asymmetric 

samples use Kruskal Wallis test.
•  For more than two symmetric 

samples use one-way ANOVA.
•  Find the mean and/or median.
•  Consider drawing a histogram.
• Find the standard deviation.

Go to Chapter 3:
• Draw a scatter plot of the data.
•  Use Pearson’s r test to measure 

the strength of association between 
the two variables.

•  For a linear association produce a 
line of best fi t. 

•  For a non-linear association join 
the plotted points with straight lines.

•  Find the mean and/or median.
• Consider drawing a histogram.
• Find the standard deviation.

Do you want to look 
for a relationship 

between two 
quantitative variables 
measured for each 

individual in a sample?



APPENDIX 2

Summary of statistical skills from 
school courses in mathematics

Broad General Education
• Rounding numbers.
• Use scientific notation.
• Use fractions, decimal fractions and percentages.
• Use proportion and ratios.
•  Use understanding of bias and sample size  

to evaluate data.
• Evaluate raw and graphical data.
•  Find the mean, median and mode of a set  

of numbers and decide which is the most 
appropriate to use.

•  Display data in tables, charts, diagrams and graphs.
•  Use appropriate tables, charts, diagrams  

and graphs to display discrete, continuous  
or grouped data.

National 4
•  Constructing a frequency table with class intervals 

from raw data.
• Determine mean, median and mode of a data set.
•  Display discrete, continuous and grouped data in 

an appropriate way.
• Represent raw data in a pie chart.
• Construct a scatter graph.
• Draw a best-fitting straight line. 
• Rounding numbers.
• Calculate percentages.
• Calculate percentage increase and decrease. 
• Calculate ratio and direct proportion. 
•  Extract and interpret data from tables, bar  

and pie charts, scatter and line graphs,  
stem and leaf diagrams.

•  Make and explain decisions based on  
the interpretation of data. 

National 5
• Rounding to a given number of significant figures. 
•  Compare data sets using semi-interquartile  

range and standard deviation.
•  Determine the equation of a best-fitting  

straight line on a scatter graph and use it  
to estimate y given x.

Statistics stand-alone Unit at SCQF level 6
• Types of data, random sampling, outliers.
•  Interpretation of pie charts, bar charts, stem 

and leaf diagrams, box plots, frequency tables, 
contingency tables and histograms. 

• Interpretation of histograms.
•  Mean, median, standard deviation and 

interquartile range.

• Correlation and linear regression.
•  Interpret and report the results of a  

hypothesis test.
• Understand and interpret confidence intervals 
•  Perform simple analysis using t-tests and  

paired t-tests.
• Use z-tests to compare two proportions 
•  Understand how errors can arise in  

statistical testing. 
• Undertake a correlation and regression analysis. 
• Undertake a data analysis. 
 
APPENDIX 3

Further reading
If you would like to delve a little deeper into the ideas 
here then there are some books we can recommend.

•  Asking Questions in Biology: A Guide to 
Hypothesis Testing, Experimental Design 

  and Presentation in Practical Work and 
Research Projects

 By Francis Gilbert, Peter McGregor, Chris Barnard.
 Published by Pearson Education.

  The fourth edition was published in 2011, but if 
you can get an earlier edition second hand those 
are wonderful too. This book guides you through 
the whole process of coming up with an interesting 
research idea, how you can collect data to explore 
the question you are interested in, how to analyse 
that data, and how to write up the analysis 

•  Biomeasurement: a student’s guide  
to biological statistics

 By Dawn Hawkins.
 Published by Oxford University Press.

  The third edition was published in 2014, but if you 
can get an earlier edition second hand then those 
would be great too. This book will introduce you 
to move sophisticated statistical techniques that 
we introduce in this booklet, but this is done in a 
clear way that should be accessible by later-years 
school pupils. 

• Practical Statistics for Field Biology

 By Jim Fowler, Lou Cohen and Phil Jarvis.
 Published by John Wiley and Sons.

  This is very much like the book by Hawkins but is 
smaller. This makes it cheaper although it does 
not cover the diversity of techniques covered by 
Hawkins. It will still let you explore statistics in 
more depth than we have here, and does so in  
a fantastically clear style.
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