

SSERC MEET -MICROBITS IN THE BIOLOGY CLASSROOM

To inspire, enthuse and support STEM educators for the benefit of all learners

1. Provision of professional learning

Supporting childminders, early years practitioners, primary and secondary school teachers, school technicians and other educators in voluntary, youth work or CLD settings to deliver high-quality, hands-on practical STEM activities for learners

2. The Advisory Service

To ensure the delivery of practical STEM learning is safe for childminders, early years practitioners, primary and secondary school teachers, school technicians and other educators in voluntary or CLD settings and their learners

3. STEM Engagement

Operation of the STEM Ambassador Hub in Scotland, Young STEM Leader Programme, Education Industry Partnerships, Nuffield Research Placements, ESERO Champion, and ENTHUSE Partnerships

Join the discussion

www.menti.com

Enter the code

2952 3834

Or use QR code

Aims of the Session

 To demonstrate the impact of coding in the Science classroom

To illustrate the functionality of the Micro:bit

SSERC Meet: Micro:bits in the biology classroom

	Friday 24 th February: 4.15 – 5.15pm
4.15 – 4.20	Introduction to SSERC and to this short course
4.20 - 4.30	Session 1: Light meter
4.30 - 4.40	Session 2: Soil moisture meter
4.40 - 4.50	Session 3: Reaction game
4.50 - 5.00	Session 4: Muscle sensor
5.00 - 5.15	Questions and shared experience of Micro:bits in the classroom

Scottish Governmen Riaghaltas na h-Albo gov.scot

In line with our broader ambitions around equality, we are working to encourage more girls and young women to engage with computing science with a view to strengthening Scotland's future tech sector.

By supporting school-stage extracurricular programming clubs offering exciting extracurricular activities, we aim to expand and diversify the talent pipeline of young people who study technology-related disciplines and ultimately pursue a career in digital technologies.

STEM Education and Training Strategy: Refresh

 Digital skills play a huge and growing role in society and the economy as well as enabling the other STEM disciplines. Like mathematics, digital skills and digital literacy in particular are essential for participation in society and across the labour market. Digital skills embrace a spectrum of skills in the use and creation of digital material, from basic digital literacy, through data handling and quantitative reasoning, problem solving and computational thinking, to the application of more specialist computing science knowledge and skills that are needed in data science, cyber security and coding. Within digital skills, as noted above, computing science is a separate discipline and subject.

However, it is often the interconnections between these separate parts that are important in life and in work.

STEM

STEM Education and Training Strategy: Refresh

SESSION 1: WHY USE MICRO:BITS?

Students create technology with the micro:bit.

Pupils need to change from being users of technology to being creators, in order to develop <u>critical skills</u>.

Why micro:bit? **Pupil skills**

Collaboration	Communication
Leadership	Critical Thinking
Creativity	Problem Solving

Enhance Engagement

Why micro:bit?

Materials v

Electronic Kits 🗸

Coc

- Perfect tool for developing skills
- Affordable and durable
- Scottish Government providing 2 boxes per school
- Compatible with most devices
- 'Wow' factor and engagement
- Brilliant free online infrastructure to support
- Accessible for beginners but unlimited possibilities
- Can be used across the curriculum vehicle for Cross
 Curricular learning

£13.75

BBC micro:bit V2 - Kitronik Starter Kit

Micro:bit V1 & 2 (front)

Micro:bit V1 & 2 (back)

Micro:bit V2 only

Hardware & Software

To use the micro:bit you need both the hardware and software

Microsoft MakeCode

No Computing Science Knowledge Required!

micro:bit.org vs MakeCode

Using microbit.org

Classroom joining details

Open the URL and enter the classroom name and PIN

SESSION 2: A LIGHT METER

Curriculum Organisers		Experiences and Outcomes for planning learning, teaching and assessment	Benchmarks to support practitioners' professional judgement	
	Biodiversity and interdependence	I can sample and identify living things from different habitats to compare their biodiversity and can suggest reasons for their distribution. SCN 3-01a	 Ider Coll for e for t 	ntifies living things using biological keys. lects and analyses increasingly complex data and information, example, temperature and light intensity, to suggest reasons the distribution of organisms within different habitats.

Biolog <mark>y: life on Earth (</mark> continued)							
Key areas	Depth of knowledge required	Suggested learning activities					
 1 Ecosystems (continued) d Competition in ecosystems occurs when resources are in short supply. Interspecific competition occurs amongst individuals of different species for one or a few of the resources they require. Intraspecific 	N5	 Investigate interspecific competition in animals, eg red and grey squirrels, brown and rainbow trout. Investigate interspecific competition in plants, eg a variety of different seeds. 					
competition occurs amongst individuals of the same species and is for all resources required. Intraspecific competition is therefore more intense than interspecific competition.		 Investigate intraspecific competition, eg cress seedling density, trees of the same species growing close together. 					
 2 Distribution of organisms a Competition for resources, disease, food availability, grazing and predation are biotic factors. Light intensity, moisture, pH and temperature are abiotic factors. 		 Interpret predator prey interaction graphs. 					
b Measuring abiotic factors such as light intensity, soil moisture, pH and temperature. Possible sources of error and how to minimise them.		 Use of techniques for abiotic factors: temperature using thermometer or temperature probes, light using light meters, moisture using moisture meters, pH using pH meters or chemical test. Use of probes linked to appropriate data 					

- Micro:bit v2
- MakeCode website

Coding the Micro:bit This will function as a Light Meter.

3 in 1 Soil Meter

Provides quick indications of soil moisture pH and light conditions. Pack Size: 1

View full specifications

Code: SO96204

Be the first to review this product

£10.80

£12.96 Inc. VAT

In stock

- 1 +

Add to Basket

Great one to start with because the makecode website has a step-by-step tutorial on how to code the micro:bit

SESSION 2: SOIL MOISTURE METER

Curriculum Organisers		Experiences and Outcomes for planning learning, teaching and assessment		Benchmarks to support practitioners' professional judgement	
Biodiversit and interdepen	ty ndence t ricity	I can sample and identify living things from different habitats to compare their biodiversity and can suggest reasons for their distribution. SCN 3-	01a	 Identifies living things using biological keys. Collects and analyses increasingly complex data and information, for example, temperature and light intensity, to suggest reasons for the distribution of organisms within different habitats. 	
Electricity	Having and vo circuit show circuit applic	g measured the current oltage in series and parallel s, I can design a circuit to the advantages of parallel s in an everyday ation. SCN 3-09a	•	Applies knowledge from practical investigations to describe the similarities and differences between series and parallel circuits and explain the advantages of parallel circuits in an everyday application.	

Biolog <mark>y: life on Earth (</mark> continued)							
Key areas	Depth of knowledge required	Suggested learning activities					
 1 Ecosystems (continued) d Competition in ecosystems occurs when resources are in short supply. Interspecific competition occurs amongst individuals of different species for one or a few of the 		 Investigate interspecific competition in animals, eg red and grey squirrels, brown and rainbow trout. 					
resources they require. Intraspecific competition occurs amongst individuals of the same species and is for all resources		 Investigate interspecific competition in plants, eg a variety of different seeds grown together. 					
required. Intraspecific competition is therefore more intense than interspecific competition.		 Investigate intraspecific competition, eg cress seedling density, trees of the same species growing close together. 					
2 Distribution of organisms							
a Competition for resources, disease, food availability, grazing and predation are biotic factors. Light intensity, moisture, pH and temperature are abiotic factors.		 Interpret predator prey interaction graphs. 					
 Measuring abiotic factors such as light intensity, soil moisture, pH and temperature. Possible sources of error and how to minimise them. 		 Use of techniques for abiotic factors: temperature using thermometer or temperature probes, light using light meters, moisture using moisture meters, pH using pH meters or chemical test. 					
		 Use of probes linked to appropriate data logging software. 					

- Microbit & device
- Makecode website
- Part 1 quantifying moisture levels
- 3x Soil in a container 1 dry, 1 just right, 1 too wet
- Access to water
- 2 nails
- 4 wires
- 8 crocodile clips
- Paper and pen to record values

Part 2 – Measure soil moisture
Plants in soil

Part 1: Calibration Need to determine what "dry", "just right", and "saturated" soil will display as on the micro:bit.

These values are then used in the code for part 2.

sserc

Bit more tricky – you are making the code from scratch - no tutorial on makecode website

SESSION 3: A REACTION TIMER

Biology: multicellular organisms (continued)					
K	ey areas	Depth of knowledge required	Suggested learning activities		
2	Control and communication	A response to a stimulus can be a rapid action from a muscle or a slower response			
а	Nervous control	from a gland.			
i	Nervous system consists of central nervous system (CNS) and other nerves. CNS consists of brain and spinal cord. Structure and function of parts of the brain — cerebrum, cerebellum and medulla. Neurons are of three types: sensory, inter and motor. Receptors detect sensory input/stimuli. Electrical impulses carry messages along neurons. Chemicals transfer these messages between neurons, at synapses.	Sensory neurons pass the information to the CNS. Inter neurons operate within the CNS, which processes information from the senses that require a response. Motor neurons enable a response to occur at an effector (muscle or gland).	 Investigate reaction time in humans. 		
ii	Structure and function of reflex arc.	Reflexes protect the body from harm.	 Research/investigate examples of human reflex activities, eg blinking, iris reflex, response to pain. 		

Sheep Dash - How Fast Are Your Reactions 🚖 🚖 🚖 🎧 🎧 3.3 stars (22,574 plays / 26 votes) 🕽 🕻 FULLSCREEN 💡

How fast are your reactions?

Click the tranquilizer button whenever you see a sheep leaving the flock and running for freedom.

There are five sheep to stop. But be warned, there's a 3 second penalty if you shoot a dart when no sheep are running.

Go

YOU HAVE THE REACTIONS OF A 25-YEAR-OLD

With the reaction time of (357) milliseconds

All good and very addictive – but again, here pupils are *users* of technology instead of *creators*. Explore our growing brain by testing your reaction rate with the Micro:bit

MATERIALS

- <u>Micro:bit</u>
- A device to make the code.
- MakeCode website.
- 4 crocodile clips & leads
- 2 pieces of cardboard
- 4x pieces of aluminium foil
- Sellotape
- Scissors
- Marker pen

Micro:bit 2 person reaction game

SESSION 4: A MUSCLE SENSOR

B	Biology: multicellular organisms (continued)				
Key areas		Depth of knowledge required	Suggested learning activities		
2 a	Control and communication Nervous control	A response to a stimulus can be a rapid action from a muscle or a slower response from a gland.			
i	Nervous system consists of central nervous system (CNS) and other nerves. CNS consists of brain and spinal cord. Structure and function of parts of the brain — cerebrum, cerebellum and medulla. Neurons are of three types: sensory, inter and motor. Receptors detect sensory input/stimuli. Electrical impulses carry messages along neurons. Chemicals transfer these messages between neurons, at synapses.	Sensory neurons pass the information to the CNS. Inter neurons operate within the CNS, which processes information from the senses that require a response. Motor neurons enable a response to occur at an effector (muscle or gland).	 Investigate reaction time in humans. 		
ii	Structure and function of reflex arc.	Reflexes protect the body from harm.	 Research/investigate examples of human reflex activities, eg blinking, iris reflex, response to pain. 		

Materials required

- Micro:bit
- Makecode website
- 2 pieces of aluminium foil, folded to create a rectangle ~3cm x 2cm
- 2 pieces of masking tape
 - 4 crocodile clips
- 2 wires
- Device

Open to questions, comments or sharing what you've done in schools as well ©

