## Using Tracker - defining variables (Soap bubble example)

This document assumes you have worked through Analysing linear motion using Tracker and can set axes, change the quantities displayed on graphs etc.

There is an experiment to find the viscosity of air that involves measuring the radius $r$ of a soap bubble at the end of a capillary tube as it deflates. We will not go into the full theory here. Get in touch if you want to know more, or consult Tyler - A Laboratory Manual of Physics. This venerable book describes a method that uses a travelling microscope to find the bubble radius. We will be using video analysis but the theory is the same.

Our focus here will be to use Tracker to produce a graph of $r^{4}$ versus time $t$. This should be a straight line with a negative gradient. It is a step in the process to determine the viscosity.

A capillary tube was dipped in a soap solution and a bubble blown. The end of the tube was closed with a finger to maintain the bubble and then clamped in front of a black background, with a ruler secured in the same plane.

A Veho USB microscope connected to a laptop was used to capture the deflating bubble.

Note that our capillary tube had a diameter of about 4 mm . To do this experiment with a travelling microscope, a very much narrower tube would be required so that deflation occurred slowly. There could be a very large uncertainty in the measurement of this diameter.


The bubble was susceptible to bursting due to air currents, so we lowered it into a glass beaker to protect it.

The beautiful coloured bands on the bubble, due to thin film interference, could form the basis of another project!

Launch Tracker and import the video bubble.wmv.

Place the axes at the centre of the bubble. Calibrate the image in the usual way.

Create a Point Mass and track the edge of the bubble as it deflates.

Of course, as the bubble deflates, its centre moves upwards. This isn't a problem. Always track the edge of the bubble at its widest point and the $x$ measurement will then be its radius.

Note how our tracking point moves inwards and upwards. Keep tracking until the bubble bursts.

It's clear from the graph that the relationship between $x$ (i.e. radius) and $t$ is not linear.

We think that the relationship is such that a graph of $r^{4}$ versus $t$ would be a straight line. Can we show this?



If we click the $y$-axis quantity to try to change it, not surprisingly, $x^{4}$ or $r^{4}$ is not an option.

However, Tracker gives us an opportunity to define a new variable in terms of existing quantities, so that's what we'll do.

## Click Define...



This is what should appear.
Click the Add button in the lower part of the box, below where it says Data Functions.

This should appear:

Double click in the cell that says func.

Change func to rto4.
What you can enter here is quite limited, hence the clumsy variable name and lack of units. At this point, exporting data to a spreadsheet probably seems like a better idea.

Press the Enter key.


## Data Functions



Now double click on the expression cell. You should see this:

We're going to tell Tracker how to calculate a new variable we've named 'rto4'.


From the list of Variables, click $x$ and type $\wedge 4$ after it as shown.

## Press Return.

Click Close on the box.

We've now defined a new variable rto4 as $x$ raised to the power of 4 .


If we click the $y$-axis quantity, we see that rto4 is now listed and we can select it.px: momentum $x$-componentp : momentum magnitude
$\theta$ p: momentum angle
pixelx: pixel $x$-component
pixely: pixel y-component
L: path length
K : kinetic energy
rto4
Define...

## mass_A <br> Measure Analyze

...and here's our graph of $r^{4}$ versus $t$.
As before, we double clicked the graph to make it bigger.

For proper analysis, it would be best to go to File... Export... Data file and export measurements into Excel where much more detailed analysis can take place, but this facility is good for showing whether or not you're on the right... err... track.


