

Making Light of Photosynthesis

Kate Andrews, Paul Beaumont, Kath Crawford and David McCaig

Aim:

- to offer hands-on experience of activities to support learning and teaching of photosynthesis at CfE level 3

Overall aims of CfE:

- Raise standards of achievement
- Reduce the achievement gap
- Prepare for the future

inclusive, learner engagement, improving learning experiences, deeper understanding, HOTS, SLLW, application, flexible, adaptable...

Curriculum for Excellence: Sciences Experiences and outcomes

I have collaborated on investigations into the process of photosynthesis and I can demonstrate my understanding of why plants are vital to sustaining life on Earth [SCN 3-02A]

curriculum for excellence: sciences experiences and outcomes

Scotland scotland improving Scotlish education

Curriculum for Excellence: Sciences Experiences and outcomes

curriculum for excellence: sciences experiences and outcomes

Through exploring the carbon cycle, I can describe the processes involved in maintaining the balance of gases in the air, considering causes and implications of changes in the balance [SCN 4-05b]

curriculum for excellence: sciences principles and practice

www.curriculumforexcellencescotland.gov.uk

Today's workshop supports:

- Active learning
- Scientific practical investigation and inquiry
 - Carry out experiments
 - Observe, collect, measure & record evidence
 - Present , analyse and interpret data to draw conclusions
 - Review and evaluate results to identify limitations and improvements
 - Present and report on findings

Today's workshop supports:

- Analytical thinking skills
 - Linking and applying learning
 - Thinking creatively and critically
 - Reasoning to provide explanations supported by evidence
 - Making predictions, generalisations & deductions
 - Drawing conclusions

- The numbers are HUGE!
 Atmospheric CO₂ is 0.035% (and rising!)
 - Total CO_2 in atmosphere 700 x 10⁹ t
 - Photosynthesis fixes ~100 x 10⁹ t yr¹
- ~15% of total atmospheric CO₂ moves into photosynthetic organisms each year!

Today's practical work:

- Photosynthesis, in particular gasexchange
 - Cabomba
 - hydrogencarbonate indicator
 - sodium hydrogencarbonate
- Investigations

- Water plant
- Non-native so care in disposal!
- Aquaria
- Wonderful alternative to Elodea

- Hydrogencarbonate indicator
 - Used to measure [CO₂]
 - Orange/red in air
 - Increasingly yellow as [CO₂] increases
 - Orange → red → magenta → deep purple as
 [CO₂] decreases

Hydrogencarbonate indicator

pH 6.8

(in 0.4 increments)

Cabomba 1:

 Compare the effect of Cabomba on hydrogencarbonate indicator in light and dark conditions

From knowledge of hydrogencarbonate indicator, make deductions about gas exchange in Cabomba under different conditions

Before starting:

 Wash two empty Bijou bottles with a small quantity of hydrogencarbonate indicator, then discard the indicator (wash in sink)

If there is any colour change, rinse again

• Continue until there is no colour change

1.Cut 10 fronds of roughly equal size from a stem of Cabomba

Add 5 fronds to each of two empty Bijou bottles

2.Fill each bottle with hydrogencarbonate indicator

3,4. Cover one Bijou with black paper. Irradiate both bottles.

(30-40 min)

-01 ⁵	re/eas		
use suger	Match the characteristics to the organism		-se carbon d.
^{contain} chlorophyll	Animals	Plants	respire
use light ener			
respire			ure carbon dioxide
use carbon dioxide			(JSC)
photosynthesise			^{use} light energy
release can			make sugars
"Bon diotide			contain chlorophy.

Match the characteristics to the organism			
Animals	Plants		
Respire • Use oxygen • Use sugars • Release carbon dioxide Consumer	 Respire Use oxygen Use sugars Release carbon dioxide Photosynthesise Use carbon dioxide Use light energy Contain chlorophyll Make sugars Release oxygen 		

• To investigate gas evolution under different lighting conditions

To contribute to the development of an understanding of why plants are vital to sustaining life on Earth

1. A piece of Cabomba equal to the length of a boiling tube.

Place Cabomba in the boiling tube, stem end upwards

Fill boiling tube with 1% sodium hydrogencarbonate

2. Cut the Cabomba stem under the liquid
3-5. 'Play' with lamp

6. Squeeze the bulb of a 3 cm³ plastic pipette very tightly and extract fluid until pipette fills

7. Seal pipette
 by placing
 Blu-tack[™]
 over tip

8,9. Cut pipette at 3 cm³ mark, then top up any fluid lost from the weighing boat Full pipette essential!

10, 11.

Quickly invert the full pipette and place over the Cabomba tip

12. Irradiate for 30 – 40 min

 How could we identify what gas is being given off by the Cabomba?

5. What colour changes do you notice in the hydrogencarbonate indicator?

- Can you suggest a reason for the colour change in the
 - light
 - dark?

 Can you suggest a reason for the colour change in the:

light

dark

6. To help, pour the hydrogencarbonate indicator from the Bijou that has been in the light into a Universal bottle. Use a straw to gently blow through it.

Work in groups:

Use the results from your practical work and the information in your T-chart to arrange the cards to show how plants and animals use carbon

What do you notice?

You might have come up with something like this.....

Cross-curricular opportunities

http://earthobservatory.nasa.gov/GlobalMaps/

Atmospheric CO₂ measured at Mauna Loa - Keeling Curve (taken from Scripps Institution of Oceanography)

(Taken from Scripps Institution of Oceanography)

